【题目】已知四棱锥S﹣ABCD中,底面ABCD是边长为4的菱形,∠BAD=60°,SA=SD=2,点E是棱AD的中点,点F在棱SC上,且λ,SA//平面BEF.
(1)求实数λ的值;
(2)求三棱锥F﹣EBC的体积.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右顶点分别为右焦点为,直线是椭圆在点处的切线.设点是椭圆上异于的动点,直线与直线的交点为,且当时, 是等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设椭圆的长轴长等于,当点运动时,试判断以为直径的圆与直线的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数的部分图象,M,N是它与x轴的两个不同交点,D是M,N之间的最高点且横坐标为,点是线段DM的中点.
(1)求函数的解析式及上的单调增区间;
(2)若时,函数的最小值为,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过长期观察得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系为
(1)在该时段内,当汽车的平均速度为多少时,车流量最大,最大车流量为多少?(精确到0.1千辆/小时)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次考试后,对全班同学的数学成绩进行整理,得到表:
分数段 | ||||
人数 | 5 | 15 | 20 | 10 |
将以上数据绘制成频率分布直方图后,可估计出本次考试成绩的中位数是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】ABC的三个角A,B,C所对的边分别是a,b,c,向量=(2,-1),=(sinBsinC,+2cosBcosC),且⊥.
(1)求角A的大小;
(2)现给出以下三个条件:①B=45;②2sinC-(+1)sinB=0;③a=2.试从中再选择两个条件以确定ABC,并求出所确定的ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(Ⅰ)当时,求函数的单调递减区间;
(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;
(Ⅲ)若数列满足, ,记的前项和为,求证: .
【答案】(I);(II);(III)证明见解析.
【解析】试题分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(Ⅱ)当时,因为,所以显然不成立,先证明因此时, 在上恒成立,再证明当时不满足题意,从而可得结果;(III)先求出等差数列的前项和为,结合(II)可得,各式相加即可得结论.
试题解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函数的单调递减区间为 .
(Ⅱ)由得,
当时,因为,所以显然不成立,因此.
令,则,令,得.
当时, , ,∴,所以,即有.
因此时, 在上恒成立.
②当时, , 在上为减函数,在上为增函数,
∴,不满足题意.
综上,不等式在上恒成立时,实数的取值范围是.
(III)证明:由知数列是的等差数列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 将以上各式左右两边分别相加,得
.因为
所以
所以.
【题型】解答题
【结束】
22
【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(Ⅰ)将曲线的直角坐标方程化为极坐标方程;
(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com