【题目】已知函数.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若对于任意,都有成立,求实数的取值范围.
【答案】(1) ;(2)当时,函数的增区间为, ,减区间为;
当时,函数的增区间为, ,减区间为;
当时,函数的增区间为,无减区间;(3).
【解析】试题分析:(Ⅰ) 求出,可得切线斜率,根据点斜式可得切线方程;(Ⅱ)讨论三种情况,分别令得增区间, 得减区间; (Ⅲ)对于任意,都有成立等价于恒成立,利用导数研究函数的单调性,求出其最大值,进而可得结果.
试题解析:(Ⅰ)函数的定义域为.
当时, , ,
,.
所以曲线在点处的切线方程为.
(Ⅱ)因为.
令,即,解得或.
(1)当,即时,
由,得或;
由,得.
所以函数的增区间为, ,减区间为.
(2)当,即时,
由,得或;
由,得.
所以函数的增区间为, ,减区间为.
(3)当,即时, 在上恒成立,
所以函数的增区间为,无减区间.
综上所述:
当时,函数的增区间为, ,减区间为;
当时,函数的增区间为, ,减区间为;
当时,函数的增区间为,无减区间.
(Ⅲ)因为对于任意,都有成立,
则,等价于.
令,则当时, .
.
因为当时, ,所以在上单调递增.
所以.
所以.
所以.
【方法点晴】本题主要考查利用导数求曲线切线以及利用导数研究函数的单调性、不等式恒成立问题,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点 出的切线斜率(当曲线在处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.
科目:高中数学 来源: 题型:
【题目】如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求证:平面CBE⊥平面EDB;
(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg | 箱产量≥50kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣传费(万元) | 38 | 48 | 58 | 68 | 78 | 88 |
年销售量(吨) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式即。对上述数据作了初步处理,得到相关的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根据所给数据,求关于的回归方程;
(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选3年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数, )
附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com