精英家教网 > 高中数学 > 题目详情
已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y),x,y∈R},有下列命题
①若f1(x)=则f1(x)∈M;
②若f2(x)=2x,则f2(x)∈M;
③若f3(x)∈M,则y=f3(x)的图象关于原点对称;
④若f4(x)∈M则对于任意不等的实数x1,x2,总有<0成立.
其中所有正确命题的序号是   
【答案】分析:①②可验证时否符合集合的公共属性;③证明是奇函数④可用特例来否定是减函数.
解答:解:①当f1(x)=时可计算f2(x)-f2(y)与f(x+y)•f(x-y)不恒等.
②当f(x)=2x时,f2(x)-f2(y)=f(x+y)•f(x-y)成立.
③令x=y=0,得f(0)=0
令x=0,则由f2(x)-f2(y)=f(x+y)•f(x-y)得:
f(y)•f(-y)=-f2(y)
所以f(x)是奇函数,其图象关于原点对称.
④如函数f(x)满足条件:f2(x)-f2(y)=f(x+y)•f(x-y),但在定义域上是增函数
故只有②③正确
故答案为:②③
点评:本题主要考查元素与集合的关系及函数奇偶性、单调性的判断.另外在解客观题时可用特殊法,提高解题效率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x∈R};P={f(x)|f(1-x)=f(1+x),x∈R};Q={f(x)|f(1-x)=-f(1+x),x∈R};若f(x)=(x-1)3,x∈R,则下列关系中正确的序列号为:

①f(x)∈M②f(x)∈N③f(x)∈P④f(x)∈Q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y)},x,y∈R,有下列命题:
①若f1(x)=
1,x≥0
-1,x<0
则f1(x)∈M;
②若f2(x)=sinx,则f2(x)∈M;
③若f(x)∈M,y=f(x)的图象关于原点对称;
④若f(x)∈M,则对任意不等的实数x1、x2,总有
f1(x)-f2(x)
x1-x2
<0

⑤若f(x)∈M,则对任意的实数x1、x2,总有f(
x1+x2
2
)≤
f1(x)+f2(x)
2

其中是正确的命题有
 
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充三模)已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y),x,y∈R},有下列命题
①若f1(x)=
1,x≥0
-1,x<0
则f1(x)∈M;
②若f2(x)=2x,则f2(x)∈M;
③若f3(x)∈M,则y=f3(x)的图象关于原点对称;
④若f4(x)∈M则对于任意不等的实数x1,x2,总有
f4(x1)-f4(x2)
x1-x2
<0成立.
其中所有正确命题的序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={f(x)|在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立}.
(1)函数f(x)=
1
x
是否属于集合M?说明理由.
(2)证明:函数f(x)=2x+x2∈M.
(3)设函数f(x)=lg
a
2x+1
∈M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海模拟)已知集合M={f(x)|f(x)+f(x+2)=f(x+1),x∈R},g(x)=sin
πx3

(1)判断g(x)与M的关系,并说明理由;
(2)M中的元素是否都是周期函数,证明你的结论;
(3)M中的元素是否都是奇函数,证明你的结论.

查看答案和解析>>

同步练习册答案