【题目】在平面直角坐标系中,,是曲线段:(是参数,)的左、右端点,是上异于,的动点,过点作直线的垂线,垂足为.
(1)建立适当的极坐标系,写出点轨迹的极坐标方程;
(2)求的最大值.
【答案】(1);(2).
【解析】
(1)根据的参数方程可得直角坐标方程,求出端点,,求在处的切线斜率为和与轴的交点坐标,由垂直关系得的轨迹是以线段为直径的圆弧(不含端点),由此建立极坐标系,得出极坐标方程.
(2)设直线与以为圆心,为半径的圆交于两点,,则根据半径相等,由相交弦定理,得,代入,即可得出最大值.
解:(1)如图,曲线段即为抛物线上一段,
端点,,
在处的切线斜率为,与轴的交点坐标为.
因为,所以的轨迹是以线段为直径的圆弧(不含端点),
以线段的中点为极点,射线为极轴,建立极坐标系,
则点轨迹的极坐标方程为.
(2)设直线与以为圆心,为半径的圆交于两点,,
则,
由相交弦定理,得
,
当,即时,最大,最大值为.
科目:高中数学 来源: 题型:
【题目】人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间内的一个数来表示,该数越接近表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各人进行了调查,调查数据如表所示:
幸福感指数 | |||||
男居民人数 | |||||
女居民人数 |
(1)估算该地区居民幸福感指数的平均值;
(2)若居民幸福感指数不小于,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取对夫妻进行调查,用表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求的期望(以样本的频率作为总体的概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个半圆中有两个互切的内切半圆,由三个半圆弧围成曲边三角形,作两个内切半圆的公切线把曲边三角形分隔成两块,阿基米德发现被分隔的这两块的内切圆是同样大小的,由于其形状很像皮匠用来切割皮料的刀子,他称此为“皮匠刀定理”,如图,若,则阴影部分与最大半圆的面积比为( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,过点的直线,分别交于不同的两点、,直线恒过点
(1)证明:直线,的斜率之和为定值;
(2)直线,分别与轴相交于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为1的正方体中,为线段的动点,则下列4个命题中正确的有( )个
(1) (2)平面平面
(3)的最大值为 (4)的最小值为
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,四边形为矩形,,均为等边三角形,,.
(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;
(2)在(1)的条件下,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆P与圆:内切,且与直线相切,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过曲线上一点()作两条直线,与曲线分别交于不同的两点,,若直线,的斜率分别为,,且.证明:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com