精英家教网 > 高中数学 > 题目详情
线段PQ是椭圆
x2
4
+
y2
3
=1
过M(1,0)的一动弦,且直线PQ与直线x=4交于点S,则
|SM|
|SP|
+
|SM|
|SQ|
=______.
设直线PQ的方程为y=k(x-1),所以S(4,3k),
设P,Q的横坐标分别为x1,x2
联立
x2
4
+
y2
3
=1
y=k(x-1)
解得(3+4k2)x2-8k2x+4k2-12=0,
所以x1+x2=
8k2
3+4k2

x1•x2=
4k2-12
3+4k2

|SM|
|SP|
+
|SM|
|SQ|
=
3
4-x1
+
3
4-x2

=
8-(x1+x2)
(4-x1)(4-x2)

=
8-(x1+x2)
16-4(x1+x2)+x1x2

=
8-
8k2
3+4k2
16-4×
8k2
3+4k2
+
4k2-12
3+4k2

=3×
24k2+24
36+36k2

=2.
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

过动点M(a,0)且斜率为1的直线l与抛物线y2=2px(p>0)交于不同的两点A、B,试确定实数a的取值范围,使|AB|≤2p.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点.
(Ⅰ)若椭圆上的点A(1,
3
2
)到点F1、F2的距离之和等于4,求椭圆C的方程;
(Ⅱ)设点P是(Ⅰ)中所得椭圆C上的动点,求线段F1P的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
(a>b>0)的离心率e=
6
3
,短轴长为2.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l:y=ax+1与双曲线3x2-y2=1有两个不同的交点,
(1)求a的取值范围;
(2)设交点为A,B,是否存在直线l使以AB为直径的圆恰过原点,若存在就求出直线l的方程,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程
x2
k-4
+
y2
k-6
=1
表示双曲线,q:过点M(2,1)的直线与椭圆
x2
5
+
y2
k
=1
恒有公共点,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点、对称轴为坐标轴且开口向右的抛物线过点M(4,-4).
(1)求抛物线的方程;
(2)过抛物线焦点F的直线l与抛物线交于不同的两点A、B,若|AB|=8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M、抛物线N的焦点均在x轴上的,且M的中心和M的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求M,N的标准方程;
(Ⅱ)已知定点A(1,
1
2
),过原点O作直线l交椭圆M于B,C两点,求△ABC面积的最大值和此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆mx2+ny2=1与直线x+y=1交于M,N两点,MN的中点为P,且OP的斜率为
2
2
,则
m
n
的值为(  )
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27

查看答案和解析>>

同步练习册答案