精英家教网 > 高中数学 > 题目详情
甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的次预赛成绩记录如下: 
甲                    乙               
(1)用茎叶图表示这两组数据;
(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(3)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,
根据你的计算结果,你认为选派哪位学生参加合适?
(1)详见解析;(2);(3)①;②甲的成绩较稳定,派甲参赛比较合适。

试题分析:(1)十位数字为茎,个位数字为叶。(2)从甲、乙两人的成绩中各随机抽取一个用有序实数对表示,将所有情况一一例举出来,再将甲的成绩比乙高的事件一一例举出来,根据古典概型概率公式求其概率。(3)①根据平均数公式和方差公式可直接求得。②甲乙的平均数相同,但甲的方差小于乙的方差说明甲的成绩更稳定。
试题解析:解:(1)作出茎叶图如下;
    2分
(2)记甲被抽到的成绩为,乙被抽到成绩为,用数对表示基本事件:

基本事件总数                         4分
记“甲的成绩比乙高”为事件A,事件A包含的基本事件:
         5分
事件A包含的基本事件数,所以  
所以甲的成绩比乙高的概率为       6分
(3)①
 

   10分
甲的成绩较稳定,派甲参赛比较合适。    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.

(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

大家知道,莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:

(1)试估计该学校学生阅读莫言作品超过50篇的概率。
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为对莫言作品的非常了解与性别有关?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.
(1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;
(2)若通过学校选拔测试的学生将代表学校参加市知识竞赛,知识竞赛分为初赛和复赛,初赛中每人最多有5次答题机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.假设参赛者甲答对每一个题的概率都是,求甲在初赛中答题个数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四个命题:
①从匀速传递的产品生产流水线上,质检员每分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个变量的线性相关性越强,则它们的相关系数的绝对值越接近于
③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
④对分类变量的随机变量K2的观测值k来说,k越小,判断“有关系”的把握越大.其中真命题的序号为(    )
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为缓解某路段交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:
年龄
(岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频 数
5
10
15
10
5
5
赞成
人数
4
8
9
6
4
3
(1)作出被调查人员年龄的频率分布直方图.
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某高校组织自主招生考试,共有2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.

(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;
(2)面试时,每位同学抽取两个问题,若两个问题全答错,则不能取得该校的自主招生资格;若两个问题均回答正确且笔试成绩在270分以上,则获A类资格;其他情况下获B类资格.现已知某中学有两人获得面试资格,且仅有一人笔试成绩为270分以上,在回答两个面试问题时,两人对每一个问题正确回答的概率均为,求恰有一名同学获得该高校B类资格的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x
2
3
4
5
6
y
1.4
2.3
3.1
3.7
4.5
若由资料可知y对x呈线性相关关系,且线性回归方程为=a+bx,其中已知b=1.23,请估计使用年限为20年时,维修费用约为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三点(3,10),(7,20),(11,24)的横坐标x与纵坐标y具有线性关系,求其线性回归方程.
(参考公式:)

查看答案和解析>>

同步练习册答案