【题目】平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的动点的轨迹为曲线C,关于曲线C的几何性质,给出下列四个结论: ①曲线C的方程为x2=4y;
②曲线C关于y轴对称
③若点P(x,y)在曲线C上,则|y|≤2;
④若点P在曲线C上,则1≤|PF|≤4
其中,所有正确结论的序号是 .
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn= nan+1 , 其中a1=1
(1)求数列{an}的通项公式;
(2)若bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=3sin(2x﹣ )的图象为C,则下列结论中正确的序号是 . ①图象C关于直线x= 对称;
②图象C关于点( ,0)对称;
③函数f(x)在区间(﹣ , )内不是单调的函数;
④由y=3sin2x的图象向右平移 个单位长度可以得到图象C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25. (Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(Ⅱ)直线l的参数方程为 (t为参数),α为直线l的倾斜角,l与C交于A,B两点,且|AB|= ,求l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=2 ,AA1= ,AB=2,点D在棱B1C1上,且B1C1=4B1D (Ⅰ)求证:BD⊥A1C
(Ⅱ)求二面角B﹣A1D﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】综合题。
(1)已知圆C的圆心是x﹣y+1=0与x轴的交点,且与直线x+y+3=0相切,求圆C的标准方程;
(2)若点P(x,y)在圆x2+y2﹣4y+3=0上,求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际油价在某一时间内呈现出正弦波动规律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],现采集到下列信息:最高油价80美元,当t=150(天)时达到最低油价,则ω= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三条不重合的直线 和两个不重合的平面 ,下列命题正确的是( )
A.若 , ,则
B.若 , ,且 ,则
C.若 , ,则
D.若 , ,且 ,则
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com