精英家教网 > 高中数学 > 题目详情
18.下列说法正确的是(  )
A.一个命题的逆命题为真,则它的逆否命题一定为真
B.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”
C.命题“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”
D.若命题“¬p”与“p或q”都是真命题,则命题q一定是真命题

分析 A.根据四种命题真假关系进行判断,
B.根据全称命题的否定是特称命题进行判断,
C.根据逆否命题的定义进行判断,
D.根据复合命题真假关系进行判断.

解答 解:A.∵逆命题和否命题互为逆否命题,逆否命题的真假性相同,则一个命题的逆命题为真,则它的否命题一定为真,但逆否命题不一定为真,故A错误
B.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”,故B错误,
C.命题“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误,
D.若¬p为真命题,则p是假命题,若p或q为真命题,则q一定是真命题,故D正确
故选:D

点评 本题主要考查命题的真假判断,涉及含有量词的命题的否定,四种命题的真假关系以及复合命题的真假关系,涉及的知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足an+1=3an+2,n∈N*,a1=2,bn=an+1
(1)证明数列{bn}为等比数列.
(2)求数列{an}的通项公式an与其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=3-sin$\frac{πx}{2}$,则f(1)+f(2)+f(3)+…+f(100)=(  )
A.150B.200C.250D.300

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是三种分解中,两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q且p,q∈N*)是正整数n的最佳分解时,我们规定函数f(n)=$\frac{p}{q}$,例如f(12)=$\frac{3}{4}$,则关于函数f(n)有下列叙述:①f(24)=$\frac{3}{2}$;②f(144)=$\frac{9}{16}$;   ③f(13)=$\frac{1}{13}$; ④f(28)=$\frac{4}{7}$.
其中正确的有③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a∈Z,且0≤a<12,若322016+a能被11整除,则a的值为(  )
A.10B.0C.1D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-$\frac{1}{3}$x3+bx2+cx+bc.
(Ⅰ)若函数f(x)在x=1处有极值-$\frac{4}{3}$,试确定b、c的值;
(Ⅱ)若b=1,f(x)存在单调递增区间,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.线性回归模型y=bx+a+e是一次函数
B.在线性回归模型y=bx+a+e中,因变量y是由自变量x唯一确定的
C.在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适
D.用R2=1-$\frac{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-{\widehat{y}}_{i})^{2}}{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-\overline{y})^{2}}$来刻画回归方程,R2越小,拟合的效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a为f(x)=-x3+12x的极大值点,则a=(  )
A.-4B.-2C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)(x∈R)满足f(-x)+f(x)=2,若函数y=x3+x+1与y=f(x)的图象的交点从左到右依次为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),则x1+x2+x3+x4+x5+y1+y2+y3+y4+y5=(  )
A.1B.4C.5D.8

查看答案和解析>>

同步练习册答案