精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=a(a∈R),an+1=3Sn(n∈N*),则数列{an}(  )
A、可以是等差数列B、既可以是等差数列又可以是等比数列C、可以是等比数列D、既不能是等差数列又不能是等比数列
分析:这是一道典型的含有an+1,Sn的递推公式来求通项公式的题目,利用公式 an=
s1                n=1
sn-sn-1                 n≥ 2
本题是先求出Sn,再由Sn求出an,要注意对n=1和n≥2进行讨论.
解答:解:由已知,a1=a,an+1=3Sn=Sn+1-Sn
得4Sn=Sn+1
当a=0时,各项都为0,是等差数列;
当a≠0时,有
Sn+1
Sn
=4,即{Sn}是首项为a,公比为4的等比数列,
所以Sn=a•4n-1
又由 公式 an=
s1                n=1
sn-sn-1                 n≥ 2

得到an=
a                    n=1
3a•4n-2          n≥2

当a≠0,因为a1=a,a2=3a,a3=12a,,
所以:
a2
a1
a3
a2
,不是等比数列.
故选A.
点评:本题属于基础题目,运算上较为容易,另外需注意求出Sn之后,只要注意讨论n=1和n≥2的情形,进一步求出{an}的通项公式,用到的思想方法是分段讨论法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案