精英家教网 > 高中数学 > 题目详情
10.设a=log23,$b={log_{\frac{1}{2}}}3$,c=3-2,则(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:a=log23>1,$b={log_{\frac{1}{2}}}3$<0,0<c=3-2<1,
∴a>c>b.
故选:B.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列各图中,可表示函数y=f(x)的图象的只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=lg\frac{x+1}{x-1}+lg(x-1)+lg(a-x)$ (a>1).
(I)求函数定义域并判断是否存在一个实数a,使得函数y=f(x)的图象关于某一条垂直于x轴的直线对称?若存在,求出这个实数a;若不存在,说明理由.
(II)当f(x)的最大值为2时,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C的方程为x2+(y-4)2=4,点O是坐标原点,直线l:y=kx与圆C交于M,N两点.
(1)求k的取值范围;
(2)求弦MN中点G的轨迹方程,并求出轨迹的长度;
(3)设Q(m,n)是线段MN上的点,且$\frac{2}{{|OQ{|^2}}}=\frac{1}{{|OM{|^2}}}+\frac{1}{{|ON{|^2}}}$,请将n表示为m的函数,并求其定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$f(x)=\frac{1}{{{e^x}+1}}$值域为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=loga(x-1)+3的图象恒过定点P,则P的坐标是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$f(\frac{x}{2}-1)=2x+3$,则f(4)=23.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列复数的模和辐角(模保留根号;辐角为特殊角的保留π,辐角为非特殊角的用弧度制表示,并保留4位有效数字):
(1)-$\sqrt{3}$;
(2)4+2i;
(3)-2+5i;
(4)-4-3i;
(5)$\frac{1}{2}-\frac{\sqrt{3}}{2}$i;
(6)2+3i;
(7)-3+$\frac{1}{2}$i;
(9)2-3i;
(10)-3$-\frac{1}{2}$i.

查看答案和解析>>

同步练习册答案