精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系中,已知椭圆经过点,椭圆的离心率.

(1)求椭圆的方程;
(2)过点作两直线与椭圆分别交于相异两点.若的平分线与轴平行, 试探究直线的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.
(1);(2)定值.

试题分析:(1)待定系数法求椭圆方程.找到两个关于的方程即可.(2)因为的平分线与轴平行,所以直线MA,MB的斜率互为相反数.假设直线MA联立椭圆方程即可得到A点的坐标,因为M点坐标已知.再把k换成-k即可求出B点的坐标.从而求出AB的斜率即可.本题第一小题属于常规题型.第二小题要把握以下三方面:首先是MA,MB的斜率是成相反数,假设了一个另一个也知道.其次A,B的坐标也是只要知道一个另一个只要把k换成-k即可.再次求A,B坐标时M点已经知道,用韦达定理很好求出.
试题解析:(1)由,得,故椭圆方程为
又椭圆过点,则,解之得
因此椭圆方程为
(2)设直线的斜率为,由题,直线MA与MB的斜率互为相反数,直线MB的斜率为,联立直线MA与椭圆方程: ,
整理得,由韦达定理,
,整理可得

所以为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线是双曲线的左右顶点,是双曲线上除两顶点外的一点,直线与直线的斜率之积是
求双曲线的离心率;
若该双曲线的焦点到渐近线的距离是,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线为坐标原点,动直线
抛物线交于不同两点
(1)求证:·为常数;
(2)求满足的点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆经过点,且和直线相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,是双曲线与椭圆的公共焦点,点A是在第一象限的公共点.若,则的离心率是(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案