精英家教网 > 高中数学 > 题目详情
7.直线y=$\frac{1}{2}$与曲线y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则$\overrightarrow{|{M_1}{M_{13}}}$|等于(  )
A.B.C.12πD.13π

分析 利用三角函数的诱导公式与二倍角的正弦可知y=sin2x,依题意可求得M1,M2,M3,…M13的坐标,从而可求|$\overrightarrow{{M}_{1}{M}_{13}}$|的值.

解答 解:∵y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)=2cosxsinx=sin2x,
∴由题意得:sin2x=$\frac{1}{2}$,
∴2x=2kπ+$\frac{π}{6}$或2x=2kπ+$\frac{5π}{6}$,
∴x=kπ+$\frac{π}{12}$或x=kπ+$\frac{5π}{12}$,k∈Z,
∵正弦曲线y=sin2x与直线y=$\frac{1}{2}$在y轴右侧的交点自左向右依次记为M1,M2,M3,…,
∴得M1($\frac{π}{12}$,0),M2($\frac{5π}{12}$,0),M3(π+$\frac{π}{12}$),M4(π+$\frac{5π}{12}$),…M13(6π+$\frac{π}{12}$,0),
∴$\overrightarrow{{M}_{1}{M}_{13}}$=(6π,0),
∴|$\overrightarrow{{M}_{1}{M}_{13}}$|=6π.
故选A.

点评 本题考查了函数的零点与方程根的关系,着重考查正弦函数的性质,求得M1,M13的坐标是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C的圆心在坐标原点O,直线1的方程为x-y-2$\sqrt{2}$=0.
(1)若圆C与直线1相切.求圆C的标准方程;
(2)若圆C上恰有两个点到直线1的距离是1,求圆C的半径的取值范囤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+3x+b(a,b∈R),若f(x)的图象上任意不同两点连线的斜率均大于2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=sinx-\sqrt{3}cosx$,则函数f(x)的图象的一条对称轴是(  )
A.$x=\frac{5π}{6}$B.$x=\frac{7π}{12}$C.$x=\frac{π}{3}$D.$x=\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\sqrt{3}sinωx+cosωx({ω>0})$,x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值是$\frac{π}{3}$,则ω=(  )
A.1B.2C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin2x+2$\sqrt{3}sinxcosx+3{cos^2}$x
(1)求函数f(x)的最小正周期及单调递增区间
(2)已知f(α)=2+$\sqrt{3}$,且$α∈[0,\frac{π}{3}]$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果三棱锥的三条斜高相等,则三棱锥的顶点在底面上的射影是底面三角形的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{x-1}$+lg(x+1)的定义域为(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.R

查看答案和解析>>

同步练习册答案