精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1 (参数θ∈R),以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为 ,点Q的极坐标为
(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点Q的直角坐标;
(2)设P为曲线C1上的点,求PQ中点M到曲线C2上的点的距离的最小值.

【答案】
(1)解: ,得

故曲线C2的直角坐标方程为

点Q的直角坐标为(4,4)


(2)解:设P(12cosθ,4sinθ),故PQ中点M(2+6cosθ,2+2sinθ),C2的直线方程为

点M到C2的距离 =

=

PQ中点M到曲线C2上的点的距离的最小值是


【解析】(1)利用极坐标方程与直角坐标方程互化的方法,可得结论;(2)利用参数方程,结合三角函数知识,求PQ中点M到曲线C2上的点的距离的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形,均是以为直角顶点的等腰直角三角形,点的中点,点是边上的任意一点.

(1)求证:

(2)在平面中,是否总存在与平面平行的直线?若存在,请作出图形并说明:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,已知侧面ABB1A1是菱形,侧面BCC1B1是正方形,点A1在底面ABC的投影为AB的中点D.
(1)证明:平面AA1B1B⊥平面BB1C1C;
(2)设P为B1C1上一点,且 ,求二面角A1﹣AB﹣P的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知点的直角坐标为,曲线的极坐标方程为,直线过点且与曲线相交于两点.

(1)求曲线的直角坐标方程;

(2)若,求直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:

学生

第1次

第2次

第3次

第4次

第5次

65

80

70

85

75

80

70

75

80

70

则成绩较为稳定(方差较小)的那位学生成绩的方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

1)求销量(件)关于单价(元)的线性回归方程

2)若单价定为10元,估计销量为多少件;

3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?

参考公式:.参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d不为0,且 ,…, ,…(k1<k2<…<kn<…)成等比数列,公比为q.
(1)若k1=1,k2=3,k3=8,求 的值;
(2)当 为何值时,数列{kn}为等比数列;
(3)若数列{kn}为等比数列,且对于任意n∈N* , 不等式 恒成立,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在一次射击预选赛中,甲、乙两人各射击次,两人成绩的条形统计图如图所示,则下列四个选项中判断不正确的是( )

A. 甲的成绩的平均数小于乙的成绩的平均数

B. 甲的成绩的中位数小于乙的成绩的中位数

C. 甲的成绩的方差大于乙的成绩的方差

D. 甲的成绩的极差小于乙的成绩的极差

查看答案和解析>>

同步练习册答案