精英家教网 > 高中数学 > 题目详情
精英家教网如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都等于底面的边长.
(1)求证:AC⊥SD;
(2)E是侧棱SD的中点,求SB与CE所成角的正弦.
分析:(1)AC⊥BD,AC⊥SO?AC⊥平面SBD?AC⊥SD
(2)见中点作中位线,把异面直线SB与CE所成的角,转化为相交直线OE与CE所成的角
解答:精英家教网解:(1)连BD,设AC交BD于O,
∵SA=SC,∴AC⊥SO.
在正方形ABCD中,AC⊥BD,(3分)
∴AC⊥平面SBD,得AC⊥SD、(5分)
(2)∵E是AD的中点,O是BD的中点,连OE,
则OE是△DSB的中位线,
∴SB∥OE,故异面直线SB与CE所成的角为
OE与CE所成的角,即∠OEC、(8分)
设四棱维各棱长为1,则OC=
2
2
,CE=
3
2

又由(Ⅰ)知AC⊥平面SBD,
OE在平面SBD内,∴AC⊥OE.
∴sin∠OEC=
OC
CE
=
2
2
÷
3
2
=
6
3
.(12分)
点评:异面直线所成的角的求法:平移法,①选点,②平移,③解三角形,注意异面直线所成的角的范围是(0,
π
2
]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案