【题目】已知数列的前项和为,且.
(1)若数列是等比数列,求的值;
(2)求数列的通项公式;
(3)记,求数列的前项和.
科目:高中数学 来源: 题型:
【题目】学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分,规定满意度不低于98分,则评价该教师为“优秀”,现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶);
(1)指出这组数据的众数和中位数;
(2)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修,可供利用的旧墙足够长),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图2所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m, 设利用旧墙的长度为(单位: ),修建此矩形场地围墙的总费用为(单位:元).
(Ⅰ)将表示为的函数;
(Ⅱ)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,二次函数,关于的不等式的解集为,其中为非零常数,设.
(1)求的值;
(2)若存在一条与轴垂直的直线和函数的图象相切,且切点的横坐标满足,求实数的取值范围;
(3)当实数取何值时,函数存在极值?并求出相应的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网络营销部门为了统计某市网友“双11”在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图):
若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.
(1)试确定的值,并补全频率分布直方图;
(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地为弘扬中国传统文化举办“传统文化常识问答活动”,随机对该市岁的人群抽取一个容量为的样本,并将样本数据分成五组: ,再将其按从左到右的顺序分别编号为第组,第组,…,第组,绘制了样本的频率分布直方图,并对回答问题情况进行统计后,结果如下表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的比例 |
第组 |
| ||
第组 |
| ||
第组 |
| ||
第组 |
| ||
第组 |
|
⑴分别求出, 的值;
⑵从组回答正确的人中用分层抽样的方法抽取人,则第组每组应各抽取多少人?
⑶在⑵的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求所抽取的人中第组至少有人获得幸运奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与曲线有三个不同的交点.
(1)求圆的方程;
(2)已知点是轴上的动点, , 分别切圆于, 两点.
①若,求及直线的方程;
②求证:直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,平面直角坐标系上的一个动点满足.设动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)点是曲线上的任意一点,为圆的任意一条直径,求的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com