精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|x﹣ |+|x+m|(m>0)
(1)证明:f(x)≥4;
(2)若f(2)>5,求m的取值范围.

【答案】
(1)

证明:由m>0,有f(x)=|x﹣ |+|x+m|≥|﹣(x﹣ )+x+m|= +m≥4,

当且仅当 =m,即m=2时取“=”,所以f(x)≥4成立.


(2)

解:f(2)=|2﹣ |+|2+m|.

<2,即m>2时,f(2)=m﹣ +4,由f(2)>5,求得m>

≥2,即0<m≤2时,f(2)= +m,由f(2)>5,求得0<m<1.

综上,m的取值范围是(0,1)∪( ,+∞)


【解析】(1)由m>0,由f(x)的解析式利用绝对值三角不等式证得结论.(2)分当 <2时和当 ≥2时两种情况,分别根据f(2)>5,求得m的范围,再把所得m的范围取并集,即得所求.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(2)商店记录了50天该商品的日需求量(单位:件),整理得表:

日需求量n

8

9

10

11

12

频数

10

10

15

10

5

①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A,求P(A)的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围;
(2)记两个极值点分别为x1 , x2 , 且x1<x2 . 已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE长为30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足tan θ.

(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?

(2)在保证上述采光要求的前提下,如何设计ABAD的长度,可使得活动中心的截面面积最大? (注:计算中π3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.

①存在点,使得//平面

②对于任意的点,平面平面

③存在点,使得平面

④对于任意的点,四棱锥的体积均不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线 ,过的一条动直线与直线相交于N,与圆C相交于P,Q两点,MPQ中点.

(1)时,求直线的方程

(2),试问是否为定值,若为定值,请求出的值若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项为正的等比数列{an}的前n项和为Sn , S4=30,过点P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直线的一个方向向量为(﹣1,﹣1)
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 证明:对于任意n∈N* , 都有Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左右焦点,为椭圆的短轴顶点,且.

(1)求椭圆的方程

(2)过作直线交椭圆于两点,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ADCE中,AD∥EC,∠ADC=90°,AB⊥EC,AB=EB=1, .将△ABE沿AB折到△ABE1的位置,使∠BE1C=90°.M,N分别为BE1 , CD的中点.如图2.

(1)求证:MN∥平面ADE1
(2)求证:AM⊥E1C;
(3)求平面AE1N与平面BE1C所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案