精英家教网 > 高中数学 > 题目详情

【题目】某单位现需要将“先进个人”,“业务精英”、“道德模范”、“新长征突击手”、“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有( )

A. 120种 B. 150种 C. 114种 D. 118种

【答案】C

【解析】

把荣誉分成3组,然后分配到人即可.

将“先进个人”、“业务精英”、“道德模范”、“新长征突击手”、“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,
五种荣誉分3组:2,2,1类型;3,1,1类型;

2,2,1类型,共有则不同的分配方法有种方法;

3,1,1类型,共有:种方法

每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有种方法.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴.

1)求的值;

2)在图中画出函数在区间上的图象;

3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥SABCD中,底面ABCD是边长为2的正方形,SASBSCSD,点EMN分别是BCCDSC的中点,点PMN上的一点.

1)证明:EP∥平面SBD

2)求四棱锥SABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点在椭圆上.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;

(3)在第(2)问的条件下,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是常数),

(1)求函数的单调区间;

(2)当时,函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,,平面平面的中点.

(Ⅰ)证明:平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理是演绎推理的个数是( )

①两条直线平行,同旁内角互补。如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°;

②猜想数列1,3,5,7,9,11,…的通项公式为

③由正三角形的性质得出正四面体的性质;

④半径为的圆的面积,则单位圆的面积

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2-5x+b>0的解是-3<x<2,设A={x|bx2-5x+a>0},B={x|}.

(1)求ab的值;

(2)求ABA∪(UB).

查看答案和解析>>

同步练习册答案