精英家教网 > 高中数学 > 题目详情
设随机变量服从二项分布,即~,则_________
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者。将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”。
(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某员工参加项技能测试(技能测试项目的顺序固定),假设该员工在每一项技能测试中获得优秀的概率均为0.9,且不同技能测试是否获得优秀相互独立.该员工所在公司规定:三项均获得优秀则奖励千元,有项获得优秀奖励千元,一项获得优秀奖励千元,没有项目获得优秀则没有奖励.记为该员工通过技能测试获得的奖励金(单位:元).
(Ⅰ)求该员工通过技能测试可能获得奖励金的分布列;
(Ⅱ)求该员工通过技能测试可能获得的奖励金的均值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)
某同学设计一个摸奖游戏:箱内有红球3个,白球4个,黑球5个.每次任取一个,有放回地抽取3次为一次摸奖.至少有两个红球为一等奖,记2分;红、白、黑球各一个为二等奖,记1分;否则没有奖,记0分.
(I)求一次摸奖中一等奖的概率;
(II)求一次摸奖得分的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)求甲、乙两人考试均合格的概率;
(Ⅱ)求甲答对试题数的概率分布.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个袋中有形状大小完全相同的3个白球和4个红球,从中任意摸出两个球,用0表示两个球都是白球,用1表示两个球不全是白球,则满足条件X的分布列为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


随机变量的X分布列为,则(  )
A.  B. C.  D.

查看答案和解析>>

同步练习册答案