精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线C的参数方程为为参数).以坐标原点O为极,z轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

()求曲线C的普通方程和直线的直角坐标方程;

()设点.若直线与曲线C相交于AB两点,求的值.

【答案】() 曲线C的普通方程,直线的直角坐标方程()

【解析】

I)利用消去参数,求得曲线C的普通方程.利用,求得直线的直角坐标方程.

II)写出直线的参数方程,根据参数的几何意义,求得.

I)曲线C的参数方程为为参数),

消去参数可得曲线C的普通方程为

直线极坐标方程为,即,所以直线的直角坐标方程.

II)直线过点,倾斜角为,所以直线的参数方程为(t为参数)

代入,化简得,则

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,的导函数,为自然对数的底数.

1)求的值;

2)求证:;

3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥是圆的直径).规划在公路上选两个点,并修建两段直线型道路,规划要求:线段上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为为垂足),测得(单位:百米).

1)若道路与桥垂直,求道路的长;

2)在规划要求下,中能否有一个点选在处?并说明理由;

3)在规划要求下,若道路的长度均为(单位:百米),求当最小时,两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)若,证明恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面ABCD,底面四边形ABCD为等腰梯形,且EF分别为ABPD的中点.

1)求证:

2)求点C到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn,已知a11,且anSn+1an+1Snan+1λan,对一切nN*都成立.

1)当λ1时;

①求数列{an}的通项公式;

②若bn=(n+1an,求数列{bn}的前n项的和Tn

2)是否存在实数λ,使数列{an}是等差数列如果存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(.

(Ⅰ)若函数有且只有一个零点,求实数的取值范围;

(Ⅱ)设,若,若函数对恒成立,求实数的取值范围.是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,,且,则该三棱锥的外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

查看答案和解析>>

同步练习册答案