精英家教网 > 高中数学 > 题目详情
(2012•泰州二模)已知角φ的终边经过点P(1,-2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于
π
3
,则f(
π
12
)
=
-
10
10
-
10
10
分析:由已知中角φ的终边经过点P(1,-2),可求出φ角的正弦值和余弦值,由函数f(x)图象的相邻两条对称轴之间的距离等
π
3
,可求出函数的周期,进而求出ω,将
π
12
,代入函数的解析式,利用两角和的正弦公式,展开计算可得答案.
解答:解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于
π
3

∴函数f(x)的周期T=
3

∵ω>0
∴ω=3
∵角φ的终边经过点P(1,-2),
∴sinφ=
-2
5
5
,cosφ=
5
5

f(
π
12
)
=sin(3•
π
12
+φ)=sin(
π
4
+φ)=
2
2
(sinφ+cosφ)=
2
2
•(
-
5
5
)=-
10
10

故答案为:-
10
10
点评:本题考查的知识点正弦型函数解析式的求法,函数的值,其中熟练掌握三角函数的定义及正弦型函数的图象和性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泰州二模)若抛物线y2=2px(p>0)上的点A(2,m)到焦点的距离为6,则p=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x1,y1),且(x1-2)2+(y1+2)2≤8,则x12+y12的取值范围是
[8,16]
[8,16]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)如图,三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)已知z=(a-i)(1+i)(a∈R,i为虚数单位),若复数z在复平面内对应的点在实轴上,则a=
1
1

查看答案和解析>>

同步练习册答案