精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.

型】单选题
束】
8

【题目】在数列{ }中,已知,则等于(  )

A. B. C. D.

【答案】B

【解析】

将数列的等式关系两边取倒数是公差为的等差数列,再根据等差数列求和公式得到数列通项,再取倒数即可得到数列{}的通项.

将等式两边取倒数得到是公差为的等差数列,=,根据等差数列的通项公式的求法得到=.

故答案为:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).

年份(第年)

人数(人)

(1)试求人数关于年份的回归直线方程

(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);

(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x)(万
元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)<0的解集为(﹣30,0),且C(x)的最小值是﹣75,若年产量不小于80千件,C(x)=51x+ ﹣1450,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为( ,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;
(1)求函数f(x)与g(x)的解析式;
(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f (x)的定义域为D,如果存在非零常数T,对于任意 x∈D,都有f(x+T)=Tf (x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f( x)的“似周期”.现有下面四个关于“似周期函数”的命题:
①如果“似周期函数”y=f(x)的“似周期”为﹣1,那么它是周期为2的周期函数;
②函数f(x)=x是“似周期函数”;
③函数f(x)=2x是“似周期函数”;
④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.
其中是真命题的序号是 . (写出所有满足条件的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,若Sm1=-2,Sm=0,Sm1=3,则m=(  )

A. 5 B. 4 C. 3 D. 6

【答案】A

【解析】

根据数列前n项和的定义得到的值,再由数列的前n项和的公式得到,进而求得首项,由=2,解得m.

Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,则

根据等差数列的前n项和公式得到Sm,得到首项为-2,故=2,解得m=5.

故答案为:A.

【点睛】

这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。

型】单选题
束】
11

【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lganb3=18,b6=12,则数列{bn}的前n项和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________

【答案】5.

【解析】

设数列的首项为,则,所以,故该数列的首项为,所以答案应填:

【考点定位】等差中项.

型】填空
束】
15

【题目】对于不等式,则对区间上的任意x都成立的实数t的取值范围是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.

(1)求双曲线C2的方程;

(2)若直线lykx与双曲线C2恒有两个不同的交点AB,且,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C所对的边分别为a,b,c,已知sinC=
(1)若a+b=5,求△ABC面积的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的长.

查看答案和解析>>

同步练习册答案