精英家教网 > 高中数学 > 题目详情
17.设命题P:?x∈R,x2>1,则?P为?x∈R,x2≤1.

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以:设命题P:?x∈R,x2>1,则?P为:?x∈R,x2≤1
故答案为:?x∈R,x2≤1;

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,则f(f(-4))的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:以抛物线y2=2px(p>0)上的任意不同的四点为顶点的四边形不可能是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在某产品的生产过程中,次品率p依赖于日产量,已知p=$\left\{\begin{array}{l}{\frac{1}{101-x},0<x≤100}\\{1,x>100}\end{array}\right.$,其中x为正整数,已知该厂每生产一件正品可盈利A元,但生产一件次品就要损失$\frac{A}{3}$元.
(1)将该厂的日盈利额y(元)表示为日产量x(件)的函数,并指出这个函数的定义域:
(2)为了获得最大利益,该厂的日产量应定义为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.AB是抛物线y=x2的一条弦,若AB的中点到x轴的距离为1,则弦AB的长度的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$C:\frac{x^2}{49}+\frac{y^2}{24}=1$的左右焦点分别为F1,F2,C上一点P满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则△PF1F2的内切圆面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知幂函数f(x)=xα的图象过$(2,\sqrt{2})$,则f(x)=${x}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=loga$\frac{1-x}{1+x}$(a>0且a≠1)
(1)求f($\frac{1}{2012}$)+f(-$\frac{1}{2012}$)的值.
(2)判断f(x)是定义域内的单调性;
(3)当a>1时,求满足不等式f(x-2)+f(4-3x)≥0的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=2sin($\frac{7π}{6}$-2x)的周期是π;对称轴方程是x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z;对称中心是($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z.

查看答案和解析>>

同步练习册答案