精英家教网 > 高中数学 > 题目详情

【题目】已知(m,n为常数),在处的切线方程为

(Ⅰ)求的解析式并写出定义域;

(Ⅱ)若,使得对上恒有成立,求实数的取值范围;

(Ⅲ)若有两个不同的零点,求证:.

【答案】(Ⅰ),x∈(0,+∞);(Ⅱ);(Ⅲ)详见解析.

【解析】

(Ⅰ)利用导数的几何意义意义求得mn的值,根据对数函数的定义得到函数定义域;

(Ⅱ)fx)在[1]上的最小值为f1)=1,只需t3t22at+21,即对任意的上恒成立,构造函数mt),利用导数求出mt)的最大值,即可求得结论;

(Ⅲ)不妨设x1x20,得到gx1)=gx2)=0,根据相加和相减得到,再利用分析法,构造函数,求出函数单调性和函数的最小值,问题得以证明.

解:(Ⅰ)由f(x)=+nlnx可得

由条件可得,把x=-1代入x+y=2可得,y=1,

,∴m=2,,∴,x∈(0,+∞),

(Ⅱ)由(Ⅰ)知f(x)在上单调递减,∴f(x)在上的最小值为f(1)=1,

故只需t3-t2-2at+2≤1,即对任意的上恒成立,

易求得mt)在单调递减,[1,2]上单调递增,

,∴2a≥m(t)max=g(2),∴,即a的取值范围为

(Ⅲ)∵,不妨设x1x2>0,

gx1)=gx2)=0,

,相加可得,相减可得

由两式易得:;要证,即证明,即证:,需证明成立,令,则t>1,于是要证明,构造函数,∴,故t)在(1,+∞)上是增函数,

t)>(1)=0,∴,故原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线处的切线斜率为0

求b;若存在使得,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,底面的中点.

(1)求证:

(2)若二面角的大小为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.

组别

分组

回答正确的人数

回答正确的人数占本组的概率

第1组

[15,25)

5

0.5

第2组

[25,35)

0.9

第3组

[35,45)

27

第4组

[45,55)

0.36

第5组

[55,65)

3

(1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?

(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为.

1)求;(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,左、右焦点分别为,离心率为,点为线段的中点.

)求椭圆的方程.

)若过点且斜率不为的直线与椭圆交于两点,已知直线相交于点,试判断点是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.

(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.

(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.

(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

1

5

2

n

3

30

p

4

20

5

10

合计

100

1)求频率分布表中np的值,完善频率分布直方图并估计该组数据的中位数保留l位小数

2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,学校决定从这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

同步练习册答案