精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面,四边形是矩形,分别是棱的中点.

(1)求证:平面

(2)若,求点到平面的距离.

【答案】(1)证明见解析;(2)

【解析】

1)连接,证明平面平面,即可说明平面

2)先计算出,再利用等体积法,即可求出点到平面的距离.

(1)证明:连接,∵在矩形中,分别是中点,

,∴四边形是平行四边形,∴.

的中点,∴.

平面平面

平面平面.

,∴平面平面.

平面,∴平面.

(2)解:法一:∵平面,∴平面.

在平面内,作,垂足为,则.

,∴平面,∴长是点到平面的距离.

在矩形中,中点,.

.

,∴

即点到平面的距离为.

法二:设到平面的距离为

在矩形中,,∴.

平面平面,∴

,∴

的面积为.

的面积为

,∴,即点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某媒体对“男女延迟退休″这一公众关注的问题进行名意调查,如表是在某单位得到的数据:

赞同

反对

合计

50

150

200

30

170

200

合计

80

320

400

(I)能否有97.5%的把握认为对这一问题的看法与性别有关?

(II)从赞同男女延迟退休的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.

参考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在区间[-c,c]上的奇函数,其图象如下图所示.令g(x)=af(x)+b,则下列关于函数g(x)的结论:

①若a<0,则函数g(x)的图象关于原点对称;

②若a=-1,-2<b<0,则方程g(x)=0有大于2的实根;

③若a0,b=2,则方程g(x)=0有两个实根;

④若a0,b=2,则方程g(x)=0有三个实根.

其中,正确的结论为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查民众对国家实行新农村建设政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持新农村建设人数如下表:

年龄

频数

10

20

30

20

10

10

支持新农村建设

3

11

26

12

6

2

1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对新农村建设政策的支持度有差异;

年龄低于50岁的人数

年龄不低于50岁的人数

合计

支持

不支持

合计

2)为了进一步推动新农村建设政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持新农村建设人数为,试求随机变量的分布列和数学期望.

参考数据:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,求不等式的解集;

2)若时,不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=alnx3xx处取得极值.

1)若对任意x∈(0+∞),fxm恒成立,求实数m的取值范围;

2)讨论函数Fx)=fx+x2+kkR)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级有3名同学报名参加学校组织的辩论赛,现有甲、乙两个辨题可以选择,学校决定让选手以抽取卡片(除上面标的数不同外其他完全相同)的方式选择辩题,且每名选手抽取后放回.已知共有10张卡片,卡片上分别标有10个数.若抽到卡片上的数为质数(2357),则选择甲辨题,否则选择乙辩题.

1)求这3名同学中至少有1人选择甲辨题的概率.

2)用XY分别表示这3名同学中选择甲、乙辨题的人数,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案