【题目】在四棱锥中,平面,四边形是矩形,,,分别是棱,,的中点.
(1)求证:平面;
(2)若,,求点到平面的距离.
科目:高中数学 来源: 题型:
【题目】某媒体对“男女延迟退休″这一公众关注的问题进行名意调查,如表是在某单位得到的数据:
赞同 | 反对 | 合计 | |
男 | 50 | 150 | 200 |
女 | 30 | 170 | 200 |
合计 | 80 | 320 | 400 |
(I)能否有97.5%的把握认为对这一问题的看法与性别有关?
(II)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.
参考公式:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在区间[-c,c]上的奇函数,其图象如下图所示.令g(x)=af(x)+b,则下列关于函数g(x)的结论:
①若a<0,则函数g(x)的图象关于原点对称;
②若a=-1,-2<b<0,则方程g(x)=0有大于2的实根;
③若a≠0,b=2,则方程g(x)=0有两个实根;
④若a≠0,b=2,则方程g(x)=0有三个实根.
其中,正确的结论为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
年龄 | ||||||
频数 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新农村建设” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
年龄低于50岁的人数 | 年龄不低于50岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为,试求随机变量的分布列和数学期望.
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx﹣3x在x处取得极值.
(1)若对任意x∈(0,+∞),f(x)≤m恒成立,求实数m的取值范围;
(2)讨论函数F(x)=f(x)+x2+k(k∈R)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级有3名同学报名参加学校组织的辩论赛,现有甲、乙两个辨题可以选择,学校决定让选手以抽取卡片(除上面标的数不同外其他完全相同)的方式选择辩题,且每名选手抽取后放回.已知共有10张卡片,卡片上分别标有共10个数.若抽到卡片上的数为质数(2,3,5,7),则选择甲辨题,否则选择乙辩题.
(1)求这3名同学中至少有1人选择甲辨题的概率.
(2)用X、Y分别表示这3名同学中选择甲、乙辨题的人数,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com