精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,且过点为其右焦点.

(1)求椭圆的方程;

(2)设过点的直线与椭圆相交于两点(点两点之间),若的面积相等,试求直线的方程.

 

【答案】

(1);(2)

【解析】

试题分析:(1)因为,所以.  

设椭圆方程为,又点在椭圆上,所以

解得,   

所以椭圆方程为.  

(2)易知直线的斜率存在,

的方程为,  由消去整理,得

,   

由题意知

解得

,则, ①,. ②.

因为的面积相等,

所以,所以. ③ 由①③消去. ④

代入②得. ⑤

将④代入⑤

整理化简得,解得,经检验成立. 

所以直线的方程为.

考点:椭圆的标准方程;椭圆的简单性质;直线与椭圆的综合应用。

点评:本题考查了椭圆方程的求法,以及直线与椭圆的综合应用,为圆锥曲线的常规题,应当掌握。考查了学生综合分析问题、解决问题的能力,知识的迁移能力以及运算能力。解题时要认真审题,仔细分析。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案