精英家教网 > 高中数学 > 题目详情

【题目】如图(1),边长为的正方形中,分别为上的点,且,现沿剪切、拼接成如图(2)的图形,再将沿折起,使三点重合于点,如图(3.

1)求证:

2)求二面角最小时的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)利用图形翻折的几何关系可得出,然后由直线与平面垂直的判定定理可得出平面,由此可证明出

2)以为原点,分别为轴建立空间直角坐标系,令,可得出,求出平面和平面的法向量,然后利用空间向量法结合基本不等式可求出二面角最小时的余弦值.

1)折叠前,折叠后

,所以平面,因此

2)由(1)及题意知,因此以为原点,分别

轴建立空间直角坐标系如图:

,所以

设平面法向量为

所以,令,则

又平面法向量为

设二面角的大小为,所以

当且仅当取等号,所以.

所以二面角最小时的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某篮球教练对甲乙两位运动员在近五场比赛中的得分情况统计如下图所示,根据图表给出如下结论:(1)甲乙两人得分的平均数相等且甲的方差比乙的方差小;(2)甲乙两人得分的平均数相等且甲的方差比乙的方差大;(3)甲的成绩在不断提高,而乙的成绩无明显提高;(4)甲的成绩较稳定,乙的成续基本呈上升状态;结论正确的是( )

A.1)(3B.1)(4C.2)(3D.2)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

1求椭圆的方程;

2过点的直线,交椭圆两点,点在椭圆上,坐标原点恰为的重心,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求在区间上的最大值和最小值;

2)在曲线上是否存在点P,使得过点P可作三条直线与曲线相切?若存在,求出其横坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织了垃圾分类知识竞赛活动.设置了四个箱子,分别写有厨余垃圾有害垃圾可回收物其它垃圾;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断,将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有废电池的卡片放入写有有害垃圾的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照分组,绘成频率分布直方图如图:

(1)分别求出所抽取的人中得分落在组内的人数;

(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望;

(3) 如果某选手将抽到的20张卡片逐一随机放入四个箱子,能否认为该选手不会得到100分?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若当时,取得极值,求的值,并求的单调区间.

(2)存在两个极值点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由于工作需要,某公司准备一次性购买两台具有智能打印、扫描、复印等多种功能的智能激光型打印机.针对购买后未来五年内的售后,厂家提供如下两种方案:

方案一:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用元;

方案二:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用.

该公司搜集并整理了台这款打印机使用五年的维修次数,所得数据如下表所示:

维修次数

台数

以这台打印机使用五年的维修次数的频率代替台打印机使用五年的维修次数的概率,记表示这两台智能打印机五年内共需维修的次数.

1)求的分布列及数学期望;

2)以两种方案产生的维修费用的期望值为决策依据,写出你的选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商贸公司售卖某种水果.经市场调研可知:在未来天内,这种水果每箱的销售利润(单位:)与时间,单位:)之间的函数关系式为, 且日销售量 (单位:)与时间之间的函数关系式为

①第天的销售利润为__________;

②在未来的这天中,公司决定每销售箱该水果就捐赠元给精准扶贫对象.为保证销售积极性,要求捐赠之后每天的利润随时间的增大而增大,的最小值是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像过点

1)求函数的解析式;

2)若上有解,求的最小值;

3)记,是否存在正数,使得对一切均成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案