精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣1|+|x﹣a|
(1)当a=2时,解不等式f(x)≥4.
(2)若不等式f(x)≥2a恒成立,求实数a的取值范围.

【答案】
(1)解:由f(x)≥4得, ,或 ,或

解得: ,故原不等式的解集为


(2)解:由不等式的性质得:f(x)≥|a﹣1|,

要使不等式f(x)≥2a恒成立,则|a﹣1|≥2a,

解得:a≤﹣1或

所以实数a的取值范围为


【解析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由不等式的性质得:f(x)≥|a﹣1|,要使不等式f(x)≥2a恒成立,则|a﹣1|≥2a,由此求得实数a的取值范围.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.
(1)求M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差为0的等差数列{an}满足a1=1,且a1 , a3﹣2,a9成等比数列.
(1)求数列{an}的通项公式;
(2)记数列{ }的前n项和为Sn , 并求使得Sn + 成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线垂直,求的值;

(Ⅱ)当时,求证:存在实数使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=2n+1,(n∈N*).
(1)求数列{an}的通项an
(2)设bn=nan+1 , 求数列{bn}的前n项和Tn
(3)设cn= ,求证:c1+c2+…+cn .(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex , 对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=﹣ ,Sn+ =an﹣2(n≥2,n∈N)
(1)求S2 , S3 , S4的值;
(2)猜想Sn的表达式;并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长均为2, 分别为的中点.

(1)证明: 平面

(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案