精英家教网 > 高中数学 > 题目详情
如图所示的空间直角坐标系A-xyz中,正三角形△ABC中AB=2,AA1∥BB1∥CC1,AA1=BB1=CC1=2,D,E分别为A1C,BB1的中点.
(Ⅰ)求证:DE∥平面ABC;        
(Ⅱ)求异面直线BD与CE所成角的大小.
分析:在空间直角坐标系中,先确定相关点的坐标,(1)取取AC的中点F,利用向量证明DE∥BF,从而由线面平行的判定定理得证(2)分别求出两条异面直线的方向向量的坐标,再利用向量数量积运算的夹角公式计算向量夹角的余弦值,最后由异面直线所成的角的范围得角的大小
解答:解:依题意,A(0,0,0),B(
3
,1,0),C(0,2,0),D(0,1,1),E(
3
,1,1)
(1)取AC的中点F(0,1,0),则
BF
=(-
3
,0,0),
ED
=(-
3
,0,0)
BF
=
ED

∴DE∥BF
又BF?平面ABC,DE?平面ABC
∴DE∥平面ABC
(2)∵
BD
=(-
3
,0,1),
CE
=(
3
,-1,1)
∴cos<
BD
CE
>=
BD
CE
|
BD
|| 
CE
|
=
-3+0+1
3+1
×
3+1+1
=-
5
5

∴异面直线BD与CE所成角的余弦值为
5
5

∴异面直线BD与CE所成角的大小为arccos
5
5
点评:本题综合考查了空间直角坐标系的方法解决立体几何问题,线面平行的判定定理,求异面直线所成的角的方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△PAB是正三角形,四边形ABCD是正方形,|
AB
|=4
,O是AB中点,面PAB⊥面ABCD,以直线AB为x轴、以过点O平行于AD的直线为y轴、以直线OP为z轴建立如图所示的空间直角坐标系O-xyz,E为线段PD中点,则点E的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,AA1=3.D是BC的中点.
(1)求直线A1D与B1C1所成角的余弦值;
(2)求直线DB1与平面A1C1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在长方体ABCD-A1B1C1D1中,AB=4,AD=2,AA1=3,M,N分别是棱BB1,BC上的点,且BM=2,BN=1,建立如图所示的空间直角坐标系.求:
(1)异面直线DM与AN所成角的余弦值;
(2)直线DM与平面AMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的空间直角坐标系中,AB=AD=2,AC=4,E,F分别是AD,BD的中点.
(1)求直线CD与平面CEF所成角的正弦值;
(2)设点M在平面ABC内,满足DM⊥平面CEF,试求出点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.
(1)求正三棱柱的侧棱长;
(2)若M为BC1的中点,试用基向量
AA1
AB
AC
表示向量
AM

(3)求异面直线AM与BC所成角.

查看答案和解析>>

同步练习册答案