精英家教网 > 高中数学 > 题目详情

【题目】已知P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,则H为△ABC的(
A.重心
B.垂心
C.外心
D.内心

【答案】B
【解析】证明:连结AH并延长,交BC与D连结BH并延长,交AC与E;

因PA⊥PB,PA⊥PC,故PA⊥面PBC,故PA⊥BC;

因PH⊥面ABC,故PH⊥BC,故BC⊥面PAH,

故AH⊥BC即AD⊥BC;

同理:BE⊥AC;

故H是△ABC的垂心.

故选:B

【考点精析】利用空间中直线与直线之间的位置关系和直线与平面垂直的性质对题目进行判断即可得到答案,需要熟知相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点;垂直于同一个平面的两条直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合M={x|﹣a<x<a+1,a∈R},集合N={x|x2﹣2x﹣3≤0}.
(1)当a=1时,求M∪N及N∩RM;
(2)若x∈M是x∈N的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为椭圆 + =1上一点,F1 , F2为左右焦点,若∠F1PF2=60°.
(1)求△F1PF2的面积;
(2)求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、
(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,AB=2,点E是BC的中点.

(1)求线段DE的长;
(2)求直线A1E与平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<k<4直线L:kx﹣2y﹣2k+8=0和直线M:2x+k2y﹣4k2﹣4=0与两坐标轴围成一个四边形,则这个四边形面积最小值时k值为(
A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体ABCD﹣A1B1C1D1 , 下列向量的数量积一定不为0的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两名同学在某项测试中得分成绩的茎叶图如图所示,x1 , x2分别表示知甲、乙两名同学这项测试成绩的众数,s12 , s22分别表示知甲、乙两名同学这项测试成绩的方差,则有(

A.x1>x2 , s12<s22
B.x1=x2 , s12>s22
C.x1=x2 , s12=s22
D.x1=x2 , s12<s22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

同步练习册答案