分析 (1)解方程组$\left\{\begin{array}{l}{3x-4y-5=0}\\{(x-2)^{2}+(y-1)^{2}=25}\end{array}\right.$,能求出A、B两点的坐标.
(2)求出圆心C(2,1)到直线l:3x-4y-5=0的距离和圆半径,由此能求出|AB|,设P(2+5cosθ,1+5sinθ)是圆上任意一点,求出点P到直线l:3x-4y-5=0的距离h的最大值,由此能求出△ABM面积的最大值.
解答 解:(1)∵直线l:3x-4y-5=0与圆C:(x-2)2+(y-1)2=25交于A,B两点,
∴解方程组$\left\{\begin{array}{l}{3x-4y-5=0}\\{(x-2)^{2}+(y-1)^{2}=25}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{59+8\sqrt{154}}{25}}\\{y=\frac{13+6\sqrt{154}}{25}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{59-8\sqrt{154}}{25}}\\{y=\frac{13-6\sqrt{154}}{25}}\end{array}\right.$,
∴A($\frac{59+8\sqrt{154}}{25}$,$\frac{13+6\sqrt{154}}{25}$),B($\frac{59-8\sqrt{154}}{25}$,$\frac{13-6\sqrt{154}}{25}$).
(2)∵圆心C(2,1)到直线l:3x-4y-5=0的距离d=$\frac{|6-4-5|}{\sqrt{9+16}}$=$\frac{3}{5}$,圆半径r=5,
∴|AB|=2$\sqrt{{5}^{2}-(\frac{3}{5})^{2}}$=$\frac{4\sqrt{154}}{5}$.
设P(2+5cosθ,1+5sinθ)是圆上任意一点,
点P到直线l:3x-4y-5=0的距离h=$\frac{|6+15cosθ-4-20sinθ|}{\sqrt{9+16}}$=$\frac{|15cosθ-20sinθ+2|}{5}$=$\frac{|25sin(θ+α)+2|}{5}$,
∴hmax=$\frac{27}{5}$,
∴△ABM面积的最大值S=$\frac{1}{2}×\frac{4\sqrt{154}}{5}×\frac{27}{5}$=$\frac{54\sqrt{154}}{25}$.
点评 本题考查交点坐标的求法,考查三角形面积的最大值的求法,是中档题,解题时要认真审题,注意点到直线距离公式、圆的参数方程的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | φ=$\frac{π}{4}$是f(x)=3in(x-2φ)的图象关于y轴对称的充分不必要条件 | |
B. | |$\overrightarrow{a}$|-|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|的充要条件是$\overrightarrow{a}$与$\overrightarrow{b}$方向相同 | |
C. | a,b,c都为实数,b=$\sqrt{ac}$是a,b,c三数成等比数列的充分不必要条件 | |
D. | m=3是直线(m+3)x+my-2=0与mx-6y+5=0互相垂直的充要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com