精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足$\overrightarrow{MB}∥\overrightarrow{OA}$,$\overrightarrow{MA}•\overrightarrow{AB}=\overrightarrow{MB}•\overrightarrow{BA}$,求M点的轨迹方程.

分析 设M(x,y),得出B(x,-3),化简$\overrightarrow{MA}•\overrightarrow{AB}=\overrightarrow{MB}•\overrightarrow{BA}$,列方程化简即可.

解答 解:设M(x,y),∵$\overrightarrow{MB}∥\overrightarrow{OA}$,Bz在直线y=-3上,∴B(x,-3).
∴$\overrightarrow{MA}$=(-x,-1-y),$\overrightarrow{MB}$=(0,-3-y),$\overrightarrow{AB}$=(x,-2).
∵$\overrightarrow{MA}•\overrightarrow{AB}=\overrightarrow{MB}•\overrightarrow{BA}$,∴$\overrightarrow{MA}•\overrightarrow{AB}$+$\overrightarrow{MB}•\overrightarrow{AB}$=0,即($\overrightarrow{MA}+\overrightarrow{MB}$)•$\overrightarrow{AB}$=0,
∵$\overrightarrow{MA}+\overrightarrow{MB}$=(-x,-4-2y),
∴($\overrightarrow{MA}+\overrightarrow{MB}$)$•\overrightarrow{AB}$=-x2+2(4+2y)=0,
化简得:$y=\frac{1}{4}{x^2}-2$.
∴M点的轨迹方程为y=$\frac{1}{4}$x2-2.

点评 本题考查了平面向量的数量积运算,轨迹方程的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:解答题

已知函数的图像过点,图像上与

点P最近的一个顶点是

(1)求函数的解析式;

(2)求使函数的取值范围

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:解答题

已知ABC的三边为a,b,c.其面积S= ,且b+c=8.

(1)求cosA

(2)求S的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(-1)=0,$f(a-\frac{1}{2})<0$,
(1)求f(1)的值;
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:解答题

设数列的前项和为,且为等差数列,且

(1)求数列通项公式;

(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=loga(x3-2x)(a>0且a≠1)在区间(-$\sqrt{2}$,-1)内恒有f(x)>0,则f(x)的单调递减区间为(  )
A.(-∞,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)D.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=log2(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的单调递减区间是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-2,3)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:函数f(x)=2x2-2(m-2)x+3m-1在(1,2)单调递增
命题q:方程$\frac{x^2}{m+1}+\frac{y^2}{9-m}=1$表示焦点在y轴上的椭圆
若p或q为真,p且q为假,¬p为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别为双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,离心率为$\frac{5}{3}$,过原点的l交双曲线左、右两支分别于A,B,若|BF1|-|AF1|=6,则该双曲线的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{x^2}{18}-\frac{y^2}{32}=1$C.$\frac{x^2}{9}-\frac{y^2}{25}=1$D.$\frac{x^2}{36}-\frac{y^2}{64}=1$

查看答案和解析>>

同步练习册答案