精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,同时满足两个条件“①x∈R,f( +X)+f( -X)=0;②当﹣ <x< 时,f′(x)>0”的一个函数是(
A.f(x)=sin(2x+
B.f(x)=cos(2x+
C.f(x)=sin(2x﹣
D.f(x)=cos(2x﹣

【答案】D
【解析】解:①x∈R,f( +X)+f( -X)=0,函数的对称轴为x= ;②当﹣ <x< 时,f′(x)>0,函数单调递增, 结合选项,可得D满足,
故选D.
【考点精析】掌握函数的概念及其构成要素是解答本题的根本,需要知道函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是递增的等比数列,a1+a4=9,a2a3=8,则数列的前n项和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是递增数列,即a1=1,a4=8,即q3==8,所以q=2.因而数列的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为(
A. ﹣67
B. ﹣67
C. ﹣68
D. ﹣68

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 =1(a>b>0)的离心率e= ,且过点 ,直线l1:y=kx+m(m>0)与圆C2:(x﹣1)2+y2=1相切且与椭圆C1交于A,B两点. (Ⅰ)求椭圆C1的方程;
(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=是定义在R上的奇函数,且f(1)=1.

(1)求a,b的值;

(2)判断并用定义证明f(x)在(+∞)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两个容器,甲容器容量为x,装满纯酒精,乙容器容量为z,其中装有体积为y的水(x,y<z,单位:L).现将甲容器中的液体倒入乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒入甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过n(n∈N*)次操作之后,乙容器中含有纯酒精an(单位:L),下列关于数,列{an}的说法正确的是(
A.当x=y=a时,数列{an}有最大值
B.设bn=an+1﹣an(n∈N*),则数列{bn}为递减数列
C.对任意的n∈N* , 始终有
D.对任意的n∈N* , 都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为非负整数的数列{an}同时满足下列条件: ①a1=m(m∈N*);②an≤n﹣1(n≥2);③n是a1+a2+…+an的因数(n≥1).
(Ⅰ)当m=5时,写出数列{an}的前五项;
(Ⅱ)若数列{an}的前三项互不相等,且n≥3时,an为常数,求m的值;
(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,an为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过椭圆M: =1(a>b>0)焦点的直线x+y﹣2 =0交M于P,Q两点,G为PQ的中点,且OG的斜率为9.
(1)求M的方程;
(2)A、B是M的左、右顶点,C、D是M上的两点,若AC⊥BD,求四边形ABCD面积的最大值.

查看答案和解析>>

同步练习册答案