精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2ax+b,a,b∈R.
(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2}中任取一个元素,求方程f(x)=0有两个不相等实根的概率;
(2)若a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.
分析:(1)先确定a、b取值的所有情况得到共有12种情况,又因为方程有两个不相等的根,所以根的判别式大于零得到a>b,而a>b占6种情况,所以方程f(x)=0有两个不相等实根的概率P=0.5;(2)由a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数得试验的全部结果构成区域Ω={(a,b)|0≤a≤2,0≤b≤3},而方程f(x)=0没有实根构成的区域为M={(a,b)|0≤a≤2,0≤b≤3,a≤b},分别求出两个区域面积即可得到概率.
解答:解:(1)a取集合{0,1,2,3}中任一元素,
b取集合{0,1,2}中任一元素
∴a、b的取值情况有(0,0),(0,1)(0,2)
(1,0)(1,1)(1,2)(2,0),
(2,1),(2,2),(3,0)(3,1)(3,2)
其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.
设“方程f(x)=0有两个不相等的实根”为事件A,
当a≥0,b≥0时方程f(x)=0有两个不相等实根的充要条件为a>b
当a>b时,a的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)
即A包含的基本事件数为6.
∴方程f(x)=0有两个不相等的实根的概率P(A)=
6
12
=
1
2

(2)∵a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数
则试验的全部结果构成区域Ω={(a,b)|0≤a≤2,0≤b≤3}这是一个矩形区域,其面积SΩ=2×3=6
设“方程f(x)=0没有实根”为事件B
则事件B构成的区域为M={(a,b)|0≤a≤2,0≤b≤3,a≤b}即图中阴影部分的梯形,其面积SM=6-
1
2
×2×2=4
由几何概型的概率计算公式可得方程f(x)=0没有实根的概率P(B)=
SM
SΩ
=
4
6
=
2
3
点评:考查学生函数与方程的综合运用能力,以及排列组合,求事件概率的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案