精英家教网 > 高中数学 > 题目详情
1.过点M(3,-1)且被点M平分抛物线y2=4x的弦所在的直线方程2x+y-5=0.

分析 设直线与抛物线两交点,A(x1,y1),B(x2,y2),代入抛物线方程,结合点差法和中点坐标公式可求直线的斜率,进而可求直线方程.

解答 解:设直线与椭圆交于点A,B,设A(x1,y1),B(x2,y2
由题意可得$\left\{\begin{array}{l}{{y}_{1}}^{2}=4{x}_{1}\\{{y}_{2}}^{2}=4{x}_{2}\end{array}\right.$
两式相减两式相减可得(y1-y2)(y1+y2)=4(x1-x2),
由中点坐标公式可得,$\frac{1}{2}$(y1+y2)=-1,即y1+y2=-2,
KAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=-2,
∴所求的直线的方程为y+1=-2(x-3),即2x+y-5=0,
故答案为:2x+y-5=0

点评 本题主要考查了直线与椭圆相交关系的应用,要掌握这种设而不求的方法在求解直线方程中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.椭圆$\frac{x^2}{9}+\frac{y^2}{2}=1$的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则|PF2|=4;${S_{△P{F_1}{F_2}}}$的大小为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列说法中不正确的有①②③
①若存在x1,x2∈I,当x1<x2时,f (x1)<f (x2),则y=f(x)在I上是增函数;
②函数y=x2在R上是增函数;
③y=$\frac{1}{x}$的单调递减区间是(-∞,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,则a+b的值是$\frac{1}{3}$;f(a)=$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α是第二象限的角,tanα=-$\frac{1}{2}$,则cosα=-$\frac{2\sqrt{5}}{5}$,tan2α=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线l:x+$\sqrt{3}$y=0垂直,且C的一个焦点到l的距离为2,则C的标准方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1;该双曲线一个焦点到渐近线的距离为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,准线方程为x=±4.
(1)求椭圆C的方程;
(2)已知A为椭圆C上的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,AM,AN的斜率k1,k2满足k1+k2=-$\frac{1}{2}$,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A、B分别是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$的左右两个焦点,O为坐标原点,点P(-1,$\frac{\sqrt{2}}{2}$)在椭圆上,线段PB与y轴的交点M为线段PB的中点.
(1)求椭圆的标准方程;
(2)设C、D是椭圆上的两点,OC⊥OD,求三角形OCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定点F1(-1,0),F2(1,0),动点P满足|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=6,动点P轨迹为曲线C.
(1)求曲线C的方程;
(2)若曲线C与x轴的交点为A1,A2,点M是曲线C上异于点A1,A2的点,直线A1M与A2M的斜率分别为k1,k2,求k1k2的值;
(3)过点Q(2,0)作直线l与曲线C交于A,B两点.在曲线C上是否存在点N,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$?若存在,请求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案