精英家教网 > 高中数学 > 题目详情
设向量
a
b
c
满足
a
+2
b
+3
c
=
0
,且(
a
-2
b
)⊥
c
.若|
a
|=1,则|
b
|=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由条件利用两个向量垂直的性质,求得b2=
1
4
,从而求得|
b
|的值.
解答: 解:由题意可得(
a
-2
b
)•
c
=(
a
-2
b
)•(-
a
+2
b
3
)=-
1
3
a
2
-4
b
2
)=
1
3
(4
b
2
-
a
2
)=
1
3
(4
b
2
-1)=0,
求得b2=
1
4
,∴|
b
|=
1
2
点评:本题主要考查两个向量垂直的性质,求向量的模,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+1,且函数f(x)在(-∞,-1]上是单调递减函数,在[1,+∞)上是单调递增函数.
(1)求实数a的取值集合A;
(2)设函数g(x)=-x2-x+
3
4
,若对任意a∈A及t∈[-1,1]都有不等式m2+2tm+1≥g(a)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log3(x2-4x+7)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线a平行于另一条直线b,那么a就和过b的所有平面都平行
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=|sinx|+|cosx|的周期、单调性、最大值以及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若两条直线都与同一平面成相等的角,则这两条直线相互平行
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:5x-3x2-2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x,x≥0
x2-2x,x<0
,若f(-a)+f(a)≤2f(1),则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是(  )
A、f(cosA)<f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(sinA)>f(cosB)

查看答案和解析>>

同步练习册答案