精英家教网 > 高中数学 > 题目详情
设函数
(Ⅰ)若在x=处的切线与直线4x+y=0平行,求a的值;
(Ⅱ)讨论函数的单调区间;
(Ⅲ)若函数的图象与x轴交于A,B两点,线段AB中点的横坐标为,证明
(I)a=-6;(Ⅱ)①当a≥0时,函数f(x)的单调递增区间为(0,+∞);②当a<0时,函数f(x)的单调递增区间为(0,),单调递减区间为(,+∞);(Ⅲ)详见解析.

试题分析:(I)f(x)的图象在x=处的切线与直线4x+y=0平行,则,求导、代入此式即可得a的值;(Ⅱ)求导得,由x>0,知>0,故只需考虑的符号.当a≥0时,对任意x>0,>0恒成立,函数f(x)的单调递增区间为(0,+∞).当a<0时,令=0,解得,由此可得函数f(x)的单调递增区间为(0,),单调递减区间为(,+∞);(Ⅲ)因为函数的图象与x轴交于A、B两点,由(Ⅱ)知必有 .不妨设A(,0),B(,0),且
因为函数f(x)在(,+∞)上单调递减,于是要证<0成立,只需证:.这个不等式怎么证?这是一个很常见的问题,都是将a换掉,只留,然后将这个不等式变形为含的不等式,然后令,再利用导数证明.
试题解析:(I)由题知f(x)=2ax2+(a+4)x+lnx的定义域为(0,+∞),

又∵f(x)的图象在x=处的切线与直线4x+y=0平行,

解得a=-6.                          4分
(Ⅱ)
由x>0,知>0.
①当a≥0时,对任意x>0,>0,
∴此时函数f(x)的单调递增区间为(0,+∞).
②当a<0时,令=0,解得
时,>0,当时,<0,
此时,函数f(x)的单调递增区间为(0,),单调递减区间为(,+∞).      9分
(Ⅲ)不妨设A(,0),B(,0),且,由(Ⅱ)知
于是要证<0成立,只需证:
,  ①
, ②
①-②得


故只需证
即证明
即证明,变形为
,令

显然当t>0时,≥0,当且仅当t=1时,=0,
∴g(t)在(0,+∞)上是增函数.
又∵g(1)=0,
∴当t∈(0,1)时,g(t)<0总成立,命题得证.          14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设函数的极值.
(2)证明:上为增函数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数.
(Ⅰ)求函数单调递增区间;
(Ⅱ)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为a元.
(1)将全程运输成本y(元)表示为速度v()的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的极值点;
(2)对任意的,记上的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,求上的值域;
(2)求函数上的最小值;
(3)证明: 对一切,都有成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x3+ax2+bx+a2在x=1处有极值为10,则a+b=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,且,则当时, 的取值范围是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,求(   )
A.B.5C.4D.3

查看答案和解析>>

同步练习册答案