精英家教网 > 高中数学 > 题目详情
已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.
分析:根据A∩B={3},B={x|x2+cx+15=0},先求出集合B,进而可求出集合A,由此可得实数a,b,c的值.
解答:解:∵A∩B={3},
∴9+3a+b=0,9+3c+15=0.
∴c=-8.
∴B={x|x2-8x+15=0}={3,5},
∵A∪B={3,5},A∩B={3},
∴A={3}.
∴a2-4b=0,又∵9+3a+b=0
∴a=-6,b=9.
点评:本题考查集合的运算,考查计算能力,考查学生分析解决问题的能力,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,则实数P的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范围.

查看答案和解析>>

同步练习册答案