【题目】中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.
【答案】5.
【解析】
设数列的首项为,则,所以,故该数列的首项为,所以答案应填:.
【考点定位】等差中项.
【题型】填空题
【结束】
15
【题目】对于不等式,则对区间上的任意x都成立的实数t的取值范围是_______.
科目:高中数学 来源: 题型:
【题目】动物园需要用篱笆围成两个面积均为50 的长方形熊猫居室,如图所示,以墙为一边(墙不需要篱笆),并共用垂直于墙的一条边,为了保证活动空间,垂直于墙的边长不小于2m,每个长方形平行于墙的边长也不小于2m.
(1)设所用篱笆的总长度为l,垂直于墙的边长为x.试用解析式将l表示成x的函数,并确定这个函数的定义域;
(2)怎样围才能使得所用篱笆的总长度最小?篱笆的总长度最小是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得或
∴或,∴a1+a10=a1(1+q9)=-7.选D.
点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.
【题型】单选题
【结束】
8
【题目】在数列{ }中,已知,,,则等于( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lgan,b3=18,b6=12,则数列{bn}的前n项和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,进而求得q和a1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.
由题意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,则a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}为正项等比数列,
∴{bn}为等差数列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12时,(Sn)max=132.
故答案为:C.
【点睛】
这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
【题型】单选题
【结束】
12
【题目】已知数列是递增数列,且对,都有,则实数的取值范围是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设Sn是等差数列{an}的前n项和,已知与的等比中项为,且与的等差中项为1,求数列{an}的通项公式。
【答案】或.
【解析】
设等差数列{an}的首项为a1,公差为d,运用等差中项和等比中项的定义,利用等差数列的求和公式,代入可求a1,d,解方程可求通项an.
设等差数列{an}的首项,公差为,则通项为,
前项和为,依题意有,
其中,由此可得,
整理得, 解方程组得或,
由此得;或.
经检验和均合题意.
所以所求等差数列的通项公式为或.
【点睛】
本题主要考查了等差数列的通项公式和性质及等比数列中项的性质,数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用。
【题型】解答题
【结束】
20
【题目】等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn;
(2)求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100] |
甲班频数 | 5 | 6 | 4 | 4 | 1 |
乙班频数 | 1 | 3 | 6 | 5 | 5 |
(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.
附: . 临界值表
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com