精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,曲线y=x2-2x-3与两条坐标轴的三个交点都在圆C上.若圆C与直线x-y+a=0交于A,B两点,
(1)求圆C的方程;
(2)若|AB|=2数学公式,求a的值;
(3)若 OA⊥OB,(O为原点),求a的值.

解:(1)曲线y=x2-2x-3与y轴的交点为(0,3),
与x轴的交点为(-1,0),(3,0),
设圆C的圆心为(1,t),
则有12+(t+3)2=(1+1)2+t2,解得t=-1.
则圆C的半径为
∴圆C的方程为(x-1)2+(y+1)2=5.
(2)∵|AB|=2
∴圆心C到直线x-y+a=0的距离为
,解得a=0,或a=-4.
(3)设A(x1,y1),B(x2,y2),其坐标满足方程组
消去y,得2x2+2ax+a2+2a-3=0.
∵圆C与直线x-y+a=0交于A,B两点,
∴△=24-16a-4a2>0,
∴x1+x2=-a,x1x2=.①
由于OA⊥OB,∴x1x2+y1y2=0,
∵y1=x1+a,y2=x2+a,
∴2x1x2+a(x1+x2)+a2=0.②
由①②,得a=1,或a=-3.满足△>0,
故a=1,或a=-3.
分析:(1)曲线y=x2-2x-3与y轴的交点为(0,3),与x轴的交点为(-1,0),(3,0),设圆C的圆心为(1,t),解得t=-1.由此能求出圆C的方程.
(2)由|AB|=2,知圆心C到直线x-y+a=0的距离为,由点到直线的距离公式能求出a的值.
(3)设A(x1,y1),B(x2,y2),由,得2x2+2ax+a2+2a-3=0.由OA⊥OB,能求出a的值.
点评:本题考查圆的方程的求法,考查满足条件的a的值的求法,解题时要认真审题,仔细解答,注意点到直线的距离公式、韦达定理、根的判别式、向量等知识点的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线C1的参数方程是
x=2+2cosφ
y=2sinφ
(φ为参数).
(Ⅰ)将C1的方程化为普通方程;
(Ⅱ)以O为极点,x轴的正半轴为极轴建立极坐标系.设曲线C2的极坐标方程是θ=
π
3
(ρ∈R),求曲线C1与C2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线C1的参数方程为
x=2cos
y=2sin?-2
(?为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,C2的极坐标方程为ρcos(θ-
π
4
)=
2
,(余弦展开为+号,改题还是答案?)
(1)求曲线C1的极坐标方程及C2的直角坐标方程;
(2)点P为C1上任意一点,求P到C2距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为
x=
5
cosθ
y=
5
sinθ
(θ为参数,0≤θ≤
π
2
)和
x=1-
2
2
t
y=-
2
2
t
(t为参数),则曲线C1和C2的交点坐标为
(2,1)
(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,曲线C:
1
4
x2+x+y2-2y=-1
,按伸缩变换?:
x=x+2
y=y-1
得曲线C1;在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆,已知射线θ=
π
3
与曲线C2交于点D(1,
π
3
)

(I)求曲线C1,C2的方程;
(II)若点A(ρ1,θ),B(ρ2,θ+
π
2
)
在曲线C1上,求
1
ρ12
+
1
ρ22
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线y=x2+2x-3与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C被直线x-y+a=0截得的弦长为2
3
,求a的值.

查看答案和解析>>

同步练习册答案