【题目】求满足下列条件的椭圆方程:
(1)长轴在x轴上,长轴长等于12,离心率等于 ;
(2)椭圆经过点(﹣6,0)和(0,8);
(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.
【答案】
(1)解:设椭圆方程为 (a>b>0),
由题意可得,2a=12,e= ,
即有a=6, = ,即有c=4,
b= = =2 ,
即有椭圆方程为 =1
(2)解:设椭圆方程为mx2+ny2=1,(m,n>0),
由题意代入点(﹣6,0)和(0,8),可得
36m+0=1,且0+64n=1,
解得m= ,n= ,
即有椭圆方程为 =1
(3)解:当焦点在x轴上时,可设椭圆方程为 (a>b>0),
由题意可得a﹣c=4,a+c=10,
解得a=7,c=3,
b= =2 ,
即有椭圆方程为 =1;
同理,当焦点在y轴上时,可得椭圆方程为 =1.
即有椭圆方程为 =1或 =1
【解析】(1)设椭圆方程为 (a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c的关系解得b,即可得到椭圆方程.
科目:高中数学 来源: 题型:
【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的比例 |
第1组 | [18,28) | 5 | 0.5 |
第2组 | [28,38) | 18 | a |
第3组 | [38,48) | 27 | 0.9 |
第4组 | [48,58) | x | 0.36 |
第5组 | [58,68) | 3 | 0.2 |
(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3 ,b﹣c=2,cosA=﹣ .
(1)求a和sinC的值;
(2)求cos(2A+ )的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,已知对任意n∈N* , a1+a2+a3+…+an=3n﹣1,则a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.已知实数a,b,则“a>b”是“a2>b2”的必要不充分条件
B.“存在x0∈R,使得 ”的否定是“对任意x∈R,均有x2﹣1>0”
C.函数 的零点在区间 内
D.设m,n是两条直线,α,β是空间中两个平面,若m?α,n?β,m⊥n,则α⊥β
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x-3)ex+ax,aR
(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(2)当a[0,e)时,设函数f(x)在(1,+)上的最小值为g(a),求函数g(a)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学校本课程开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.
(1)求这3名学生选修课所有选法的总数;
(2)求恰有2门选修课没有被这3名学生选择的概率;
(3)求A选修课被这3名学生选择的人数ξ的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com