精英家教网 > 高中数学 > 题目详情

已知数列{an}满足:

(1)求a2,a3,a4,a5;

(2)设bn=a2n+1+4n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式;

(3)求数列{an}前100项中的所有奇数项的和S.

答案:
解析:

  (1)  4分

  (2)

  

  ∴数列是公比为的等比数列.  6分

  又  8分

  由(2)得

  

    12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列(an)满足:a1=1,an>0,
a
2
n+1
-
a
2
n
=1(n∈N*),那么使an<5成立的n的最大值为
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1,且an

(1)       求数列{an}的通项公式;

(2)       证明:对于一切正整数n,不等式a1?a2?……an<2?n!

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三上学期第三次理科数学测试卷(解析版) 题型:解答题

已知数列{an}满足:a1,且an

(1)   求数列{an}的通项公式;

(2)   证明:对于一切正整数n,不等式a1·a2·……an<2·n!

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高二上学期第三次阶段性测试理科数学卷 题型:选择题

已知数列{an}满足a1= 2,an+1-an+1=0(n∈N+),则此数列的通项an等于(    )

A.n2+1           B.n+1           C.1-n              D.3-n

 

查看答案和解析>>

科目:高中数学 来源:2010-2011吉林一中高一下学期期末数学 题型:选择题

已知数列{an}满足a1>0,=,则数列{an}是  (  )

 

A.递增数列     B.递减数列     C.摆动数列     D.常数列

 

查看答案和解析>>

同步练习册答案