精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 且 ,数列{bn}满足 ,则数列{anbn}的前n项和Tn=

【答案】10+(3n﹣5)2n+1
【解析】解:由已知得,当n≥2时,an=Sn﹣Sn1=( n2 n)﹣[ (n﹣1)2 (n﹣1)]=3n﹣2,又a1=1=3×1﹣2,符合上式.
故数列{an}的通项公式an=3n﹣2.
又因为
所以log2bn= (an+2)=n,即bn=2n
令cn=anbn
则cn=(3n﹣2)2n
所以Tn=1×21+422+723+…+(3n﹣2)2n , ①
2Tn=1×22+4×23+724+…+(3n﹣2)2n+1 , ②
由②﹣①得:﹣Tn=2+322+323+…+(3n﹣5)2n+1=3×(2+22+…+2n)﹣(3n﹣2)2n+1﹣2
=﹣(3n﹣5)2n+1﹣10,
所以Tn=10+(3n﹣5)2n+1
故答案是:10+(3n﹣5)2n+1
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 其中P,M是非空数集,且P∩M=,设f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);
(II)是否存在实数a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(M)=[﹣3,2a﹣3]?若存在,请求出满足条件的实数a;若不存在,请说明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是单调递增函数,求集合P,M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于不等式,则对区间上的任意x都成立的实数t的取值范围是_______

【答案】

【解析】

根据二次函数的单调性求出x2﹣3x+2在区间[0,2]上的最小值和最大值,把问题转化关于t的不等式组得答案.

∵x2﹣3x+2=

x[0,2]时,,(x2﹣3x+2)max=2.

对于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,对区间[0,2]上任意x都成立的实数t的取值范围是[﹣1,1﹣].

故答案为:[﹣1,1﹣].

【点睛】

本题考查函数恒成立问题,考查了不等式的解法,体现了数学转化思想方法,是基础题.二次不等式分含参二次不等式和不含参二次不等式对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于0,不等于0,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小,结合图像得到不等式的解集.

型】填空
束】
16

【题目】等差数列{an}的公差d≠0满足成等比数列,若=1,Sn{}的前n项和,则的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.

(1)求曲线C2和直线l的普通方程.

(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】199个自然数中任取两个:

恰有一个偶数和恰有一个奇数;至少有一个是奇数和两个数都是奇数;

至多有一个奇数和两个数都是奇数;至少有一个奇数和至少有一个偶数.

在上述事件中,是对立事件的是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x),满足 ,且f(3)=f(1)﹣1.
(1)求实数k的值;
(2)若函数g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为21,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数,当x∈(-3,2)时,>0,当x∈(-,-3)(2,+)时,<0

(I)求ab的值;

(II)若不等式的解集为R,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向右平移 个单位长度后,所得图象的一条对称轴方程可以是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案