精英家教网 > 高中数学 > 题目详情

【题目】是实数,

1)若函数为奇函数,求的值;

2)试用定义证明:对于任意上为单调递增函数;

3)若函数为奇函数,且不等式对任意恒成立,求实数的取值范围.

【答案】12)证明见解析(3

【解析】

1)由奇函数的定义,可得,化简整理,解方程可得的值;(2)运用单调性的定义证明,分取值、作差、变形和定符号、下结论等;(3)由于为奇函数且在上为增函数,由题意可得,等价于对任意恒成立,将二次函数的对称轴与0进行比较,结合二次函数的最值即可得到所求的范围.

1)∵,且

,∴.

2)证明:设,则

,所以上为增函数.

3)因为为奇函数且在上为增函数,

得:

对任意恒成立.

问题等价于对任意恒成立.

,其对称轴

时,,符合题意.

时,即时,对任意恒成立,等价于

解得:

综上所述,当时,不等式对任意恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的图象为,则以下结论中正确的是__________.(写出所有正确结论的编号)

①图象关于直线对称;

②图象关于点对称;

③函数在区间内是增函数;

④由的图象向右平移个单位长度可以得到图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图是正方体的平面展开图在这个正方体中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四个命题中正确命题的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在甲、乙两地销售某种品牌车,利润(单位:万元)分别为,其中为销售量(单位:辆)

1)当销售量在什么范围时,甲地的销售利润不低于乙地的销售利润;

2)若该公司在这两地共销售辆车,则甲、乙两地各销售多少量时?该公司能获得利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的定义域;

(2)判断的奇偶性并给予证明;

(3)求关于x的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数fx=4sin2x+)(x∈R),有下列命题:

①y=fx)的表达式可改写为y=4cos2x﹣);

②y=fx)是以为最小正周期的周期函数;

③y=fx)的图象关于点对称;

④y=fx)的图象关于直线x=﹣对称.

其中正确的命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,EF分别是ABPC的中点,PAAD.

求证:(1)CD⊥PD(2)EF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于相关系数的说法不正确的是( )

A. 相关系数越大两个变量间相关性越强;

B. 相关系数的取值范围为

C. 相关系数时两个变量正相关,时两个变量负相关;

D. 相关系数时,样本点在同一直线上。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对“2019年3月在北京召开的第十三届全国人民代表大会第二次会议和政协第十三届全国委员会第二次会议”的关注度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的年龄频率分布直方图,在这100人中关注度非常髙的人数与年龄的统计结果如右表所示:

年龄

关注度非常高的人数

15

5

15

23

17

(Ⅰ)由频率分布直方图,估计这100人年龄的中位数和平均数;

(Ⅱ)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以45岁为分界点的不同人群对“两会”的关注度存在差异?

(Ⅲ)按照分层抽样的方法从年龄在35岁以下的人中任选六人,再从六人中随机选两人,求两人中恰有一人年龄在25岁以下的概率是多少.

45岁以下

45岁以上

总计

非常髙

一般

总计

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案