精英家教网 > 高中数学 > 题目详情
设函数f(x)=
13
x3-mx2+(m2-4)x,x∈R.已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1)恒成立,求实数m的取值范围.
分析:本题利用导数来研究恒成立问题.先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,利用单调性结合函数的图象研究函数f(x)的零点分布问题,最后转化为一个一元二次方程的根的分布问题.
解答:解:f′(x)=x2-2mx+(m2-4),令f′(x)=0,得x=m-2或x=m+2.
当x∈(-∞,m-2)时,f′(x)>0,f(x)在(-∞,m-2)上是增函数;
当x∈(m-2,m+2)时,f′(x)<0,f(x)在(m-2,m+2)上是减函数;
当x∈(m+2,+∞)时,f′(x)>0,f(x)在(m+2,+∞)上是增函数.
因为函数f(x)有三个互不相同的零点0,α,β,且f(x)=
1
3
x[x2-3mx+3(m2-4)],
所以
(3m)2-12(m2-4)>0
3(m2-4)≠0

解得m∈(-4,-2)∪(-2,2)∪(2,4).
当m∈(-4,-2)时,m-2<m+2<0,所以α<m-2<β<m+2<0.
此时f(α)=0,f(1)>f(0)=0,与题意不合,故舍去;
当m∈(-2,2)时,m-2<0<m+2,所以α<m-2<0<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,所以m+2=1,即m=-1;
当m∈(2,4)时,0<m-2<m+2,所以0<α<m-2<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1(舍去).
综上可知,m的取值范围是{-1}.
点评:本小题主要考查函数单调性的应用、利用导数求闭区间上函数的最值、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)设函数f(x)=
(
1
3
)
x
-8(x<0)
x2+x-1(x≥0)
,若f(a)>1,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D,若对任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=2-f(x).则f(
1
3
)+f(
1
8
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)设函数f(x)=ax3+bx2+cx,记f(x)的导函数是f(x).
(I)当a=-1,b=c=-1时,求函数f(x)的单调区间;
(II)当c=-a2(a>0)时,若函数f(x)的两个极值点x1、x2满足|x1-x2|=2,求b的取值范围;
(III)若a=-
1
3
令h(x)=|f(x)|,记h(x)在[-1,1]上的最大值为H,当b≥0,c∈R时,证明:H
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
 x3+bx2+cx(c<b<1)在x=1处取到一个极小值,且存在实数m,使f′(m)=-1,
①证明:-3<c≤-1;
②判断f′(m-4)的正负并加以证明;
③若f(x)在x∈[m-4,1]上的最大值等于
-2c
3
,求f(x)在x∈[m-4,1]上的最小值.

查看答案和解析>>

同步练习册答案