精英家教网 > 高中数学 > 题目详情
已知椭圆C1
y2
16
+
x2
4
=1,椭圆C2以C1的短轴为长轴,且与C1有相同的离心率.
(I)求椭圆C2的方程;
(II)设直线l与椭圆C2相交于不同的两点A、B,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且
QA
QB
=4,求直线l的方程.
(I)设椭圆C2的方程为
x2
a2
+
y2
b2
=1
(a>b>0)
∵椭圆C1
y2
16
+
x2
4
=1,椭圆C2以C1的短轴为长轴,且与C1有相同的离心率
∴a=2,e=
3
2

∴c=
3

b=
a2-c2
=1

∴椭圆C2的方程为
x2
4
+y2=1

(II)点A的坐标是(-2,0).
设点B的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2).
与椭圆C2的方程联立,整理得(1+4k2)x2+16k2x+(16k2-4)=0
∴-2x1=
16k2-4
1+4k2
,得x1=
-8k2+2
1+4k2
,从而y1=
4k
1+4k2

设线段AB的中点为M,得到M的坐标为(-
8k2
1+4k2
2k
1+4k2

①当k=0时,点B的坐标是(2,0),线段AB的垂直平分线为y轴,
QA
=(-2,-y0),
QB
=(2,-y0).
QA
QB
=4得y0=±2
2
,∴l的方程为y=0;
②当k≠0时,线段AB的垂直平分线方程为y-
2k
1+4k2
=-
1
k
(x+
8k2
1+4k2
)

令x=0,解得y0=-
6k
1+4k2

QA
=(-2,-y0),
QB
=(x1,y1-y0).
QA
QB
=(-2,-y0)•(x1,y1-y0)=-2•
-8k2+2
1+4k2
+
6k
1+4k2
4k
1+4k2
+
6k
1+4k2
)=4
∴7k2=2
k=±
14
7

∴l的方程为y=±
14
7
(x+2)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
4
+y2=1
,椭圆C2以椭圆C1的长轴为短轴,且与C1有相同的离心率,则椭圆C2的标准方程为
y2
16
+
x2
4
=1
y2
16
+
x2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安一模)已知椭圆C1
y2
16
+
x2
4
=1,椭圆C2以C1的短轴为长轴,且与C1有相同的离心率.
(I)求椭圆C2的方程;
(II)设直线l与椭圆C2相交于不同的两点A、B,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且
QA
QB
=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
y2
a2
+
x2
b2
=1
(a>b>0)的短轴长为4,离心率为
2
2
,其一个焦点在抛物线C2:x2=2py(p>0)的准线上,过C2的焦点F的直线交C2于A、B两点,分别过A、B作C2的切线,两切线交于点Q.
(Ⅰ)求C1、C2的方程;
(Ⅱ)当点Q在C1内部运动时,求△QCD面积的取值范围.

查看答案和解析>>

同步练习册答案