精英家教网 > 高中数学 > 题目详情

【题目】给出下列四个命题:
①函数y=|x|与函数y=( 2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;
④y=2|x|的最小值为1
⑤对于函数f(x),若f(﹣1)f(3)<0,则方程f(x)=0在区间[﹣1,3]上有一实根;
其中正确命题的序号是(填上所有正确命题的序号)

【答案】③④
【解析】解:对于①,函数y=|x|的定义域为R,与函数y=( 2的定义域为[0,+∞),故函数y=|x|与函数y=( 2不表示同一个函数,故①错误;
对于②,函数y= 为奇函数,但它的图象不通过直角坐标系的原点,故②错误;
对于③,将函数y=3x2的图象向右平移1个单位得到函数y=3(x﹣1)2的图象,故③正确;
对于④,由于|x|≥0,故y=2|x|≥20=1,因此y=2|x|的最小值为1,故④正确;
对于⑤,函数f(x)= ,满足f(﹣1)f(3)<0,但方程f(x)=0在区间[﹣1,3]上没有实根,故⑤错误;
综上所述,其中正确命题的序号是 ③④.
所以答案是:③④.
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)讨论的单调性;

(Ⅱ)设,证明:当时,

(Ⅲ)设的两个零点,证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,奇函数的个数是(
①f(x)=ln ,②g(x)= (ex+ex),③h(x)=lg( ﹣x),④m(x)= +
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x) (xR)

(1)求函数f(x)的最小值;

(2)已知mR,命题p:关于x的不等式f(x)m22m2对任意xR恒成立;q:函数y(m21)x是增函数.若“pq”为真,“pq”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衣柜里的樟脑丸会随着时间的挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:V=aekt . 若新丸经过50天后,体积变为 a,则一个新丸体积变为 a需经过的时间为(
A.125天
B.100天
C.50天
D.75天

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,过左焦点且斜率为的直线交椭圆 两点,线段的中点为,直线交椭圆 两点.

I)求椭圆的方程.

II)求证:点在直线上.

III)是否存在实数,使得的面积是面积的倍?若存在,求出的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于四面体ABCD,以下命题中,真命题的序号为(填上所有真命题的序号)
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程.

已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为

(1)求直线l的倾斜角和曲线C的直角坐标方程;

(2)设直线l与曲线C交于AB两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 其中R …为自然对数的底数

)当时, 恒成立,求的取值范围;

)求证: (参考数据: )

查看答案和解析>>

同步练习册答案