精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,四边形是矩形, ,平面平面.

(1)求证:

(2)若 ,求二面角的余弦值.

【答案】(1) 见解析(2)

【解析】试题分析:(1)由 ,可推出,再由四边形是矩形可得,从而可证平面,设相交于点 相交于点,连接,可证平面,结合平面平面即可证明;(2)以为坐标原点,建立空间直角坐标系,求得平面的法向量与平面的法向量,利用向量的夹角公式即可得出余弦值.

试题解析:(1)在三棱柱

四边形是矩形

平面

相交于点 相交于点,连接

均是平行四边形

平面

又平面平面

(2)以为坐标原点,建立如图所示的空间直角坐标系

由(1)及题设可知, 是菱形,

设平面的法向量

解得:

又由(1)可知: 平面

平面的法向量

二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,

①若曲线与直线相切,求c的值;

②若曲线与直线有公共点,求c的取值范围.

(2)当时,不等式对于任意正实数x恒成立,当c取得最大值时,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形两边长分别为,第三边上的中线长为,则三角形的外接圆半径为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形, 平面

)求证: 平面

)求二面角的余弦值.

)在线段(含端点)上,是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.

【答案】)见解析;;)存在,

【解析】试题分析:(1由题意,证明 ,证明;(2)建立空间直角坐标系,求平面和平面的法向量,解得余弦值为;(3)得 ,所以 所以存在中点.

试题解析:

,且

)知

两两垂直,以为坐标原点,

轴建系.

,则

的一个法向量为

,取,则

由于是面的法向量,

∵二面角为锐二面角∴余弦值为

)存在点

,∴∴存在中点.

型】解答
束】
19

【题目】已知函数

)当时,求此函数对应的曲线在处的切线方程.

)求函数的单调区间.

)对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求的值;

2)求的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是直角梯形,其中.点的中点,将沿折起如图,使得平面.点分别是线段的中点.

(1)求证:

(2)求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点,焦距为.

(1)求椭圆的标准方程;

(2)直线与椭圆交于不同的两点,线段的垂直平分线交轴交于点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率为. 

(1)求椭圆的标准方程;

(2)过坐标原点作直线交椭圆两点,过点的平行线交椭圆两点.是否存在常数, 满足?若存在,求出这个常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.两点的直线方程为

B.关于直线的对称点为

C.直线与两坐标轴围成的三角形的面积是2

D.经过点且在轴和轴上截距都相等的直线方程为

查看答案和解析>>

同步练习册答案