精英家教网 > 高中数学 > 题目详情
18.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数之和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,则第n(n≥4)行倒数第四个数(从右往左数)为$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.

分析 根据“莱布尼兹调和三角形”的特征,每个数是它下一个行左右相邻两数的和,得出将杨晖三角形中的每一个数Cnr都换成分数$\frac{1}{(n+1){C}_{n}^{r}}$,就得到一个莱布尼兹三角形,从而可求出第n(n≥4)行倒数第四个数(从右往左数).

解答 解:将杨晖三角形中的每一个数Cnr都换成分数$\frac{1}{(n+1){C}_{n}^{r}}$,
就得到莱布尼兹三角形.
∵杨晖三角形中第n(n≥4)行倒数第四个数(从右往左数)Cn-13,
则“莱布尼兹调和三角形”第n(n≥4)行倒数第四个数(从右往左数)是$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.
故答案为:$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.

点评 本题考查归纳推理,解题的关键是通过观察分析归纳各数的关系,考查学生的观察分析和归纳能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B-PADE的体积是$\frac{\sqrt{3}}{3}$;
(1)画出面PBE与面ABC的交线,说明理由;
(2)求面PBE与面ABC所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某个长方形的面积为a2-(b+1)2,且它的边长都是整式,则它的周长为(  )
A.2aB.2a2-2b2-4bC.4a或2a2-2b2-4bD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.计算sin5°cos55°+cos5°sin55°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知下列三个等式:
①cos(-420°)=-$\frac{1}{2}$;
②sin3(-α)cos(2π+α)tan(-α-π)=sin4α;
③$\frac{cos(α-\frac{π}{2})}{sin(\frac{5π}{2}+α)}$=$\frac{1}{tanα}$.
其中正确的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{1}{x}$的图象的对称中心为(0,0);函数y=$\frac{1}{x}$+$\frac{1}{x-1}$的图象的对称中心为($\frac{1}{2}$,0);函数y=$\frac{1}{x}$+$\frac{1}{x-1}$+$\frac{1}{x-2}$的图象的对称中心为(1,0);…;由此推测函数y=$\frac{1}{x}$+$\frac{1}{x-1}$+$\frac{1}{x-2}$+…+$\frac{1}{x-n}$的图象的对称中心为($\frac{n}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前项和为Sn.若a1=1,an=3Sn-1+4(n≥2).
(1)求数列{an}的通项公式;
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{{b}_{n}}{{2}^{n+1}}$,其中n∈N+,记数列{cn}的前项和为Tn.求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=$\frac{1}{{{3^x}+\sqrt{3}}}$,求:f(0)+f(1);f(-1)+f(2);f(-2)+f(3),由此可以猜想出的一般性结论是若${x_1}+{x_2}=1,则f({x_1})+f({x_2})=\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的坐标方程为ρ=2cosθ,直线l经过点M(5,$\sqrt{3}$),且倾斜角为$\frac{π}{6}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)设直线l与曲线C交于A,B两点,求|MA|+|MB|的值.

查看答案和解析>>

同步练习册答案