精英家教网 > 高中数学 > 题目详情
在△ABC中,AC=2,BC=4,已知点O是△ABC内一点,且满足
OA
+2
OB
+3
OC
=
0
,则
OC
•(
BA
+
BC
)
=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:所求的数量积中有向量
OC
,并且
BA
+
BC
中不含点O,所以想着根据条件
OA
+2
OB
+3
OC
=
0
   ①,用不含点O的向量表示出
OC
,将
OA
=
OC
+
CA
OB
=
OC
+
CB
带入①即可得到:
OC
=
1
6
(
AC
+2
BC
)
,因为已知的是AC=2,BC=4,把
BA
AC
BC
表示为:
BA
=
BC
-
AC
,这样将
OC
BA
带入所求的向量的数量积即可.
解答: 解:
OA
=
OC
+
CA
OB
=
OC
+
CB

OA
+2
OB
+3
OC
=
OC
+
CA
+2(
OC
+
CB
)+3
OC
=6
OC
+
CA
+2
CB
=
0

OC
=
1
6
(
AC
+2
BC
)

OC
•(
BA
+
BC
)
=
OC
•(
BC
+
CA
+
BC
)
=
1
6
(
AC
+2
BC
)•(-
AC
+2
BC
)

=
1
6
(4
BC
2
-
AC
2
)=
1
6
(64-4)=10

故答案为:10.
点评:考查向量的减法,向量的加法,以及数量积的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,则z=x+3y-4的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O,A,B,C四点共面,直线OA是线段BC的垂直平分线,
OA
=a,
OB
=b,则
OC
=(  )
A、(
a
b
a
2
a
-
b
B、2(
a
b
a
2
a
-
b
C、(
a
b
a
2
a
+
b
D、2(
a
b
a
2
a
+
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设命题P:?x∈{x|-2<x<2},使等式x2-2x-m=0成立;命题Q:函数f(x)=3x2+2mx+m+
4
3
有两个不同的零点.“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

《中华人民共和国个人所得税》规定,全民全月工资、薪金所得不超过1600元的不必纳税,超过1600元的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全民应纳税所得额税率(%)
不超过500元的部分5
超过500元至2000元的部分10
超过2000元至5000元的部分15
超过5000元至20000元的部分20
超过20000元至40000元的部分25
超过40000元至60000元的部分30
超过60000元至80000元的部分35
超过80000元至100000元的部分40
超过100000元的部分45
某人出版了一书共纳税420元,这个人的稿费为
 
元.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx(cosx+asinx)-1图象的一条对称轴方程为x=
π
3
,则实数a的值为(  )
A、±
3
B、-
3
C、
3
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2,x∈(-∞,1.2)
x2,x∈[1.2,+∞)
,解方程:f(x)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2,椭圆C上任意一点到右焦点F距离的最大值为2+
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A,B两点,点N满足
ON
=
OA
+
OB
(O为坐标原点),求四边形OANB面积的最大值,并求此时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上奇函数.当x>0时,f(x)=x(1-x),求f(x)的表达式,并在所给坐标系中画出f(x)图象.

查看答案和解析>>

同步练习册答案