精英家教网 > 高中数学 > 题目详情
如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.

⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
(1),(2),(3).

试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,根据椭圆的长轴长为,又由椭圆的左准线,所以,就可得到椭圆的标准方程;由椭圆与椭圆离心率相同,得再由椭圆过点,代入可得椭圆(2)涉及弦中点问题,一般用“点差法”构造等量关系.本题较简单,可直接求出中点坐标,再利用直线与椭圆联立方程组求交点坐标;(3)求定值问题,一是确定定值,这可利用特殊情况給于确定,二是参数选择,不仅要揭示问题本质,更要易于消元,特别是整体消元.本题研究的是直线与直线的斜率之积,即它们坐标满足为定值,参数选为点的坐标,利用点的坐标满足进行整体消元.
试题解析:⑴设椭圆方程为,椭圆方程为
,∴,又其左准线,∴,则
∴椭圆方程为,其离心率为,                            3分
∴椭圆,由线段的长为,得,代入椭圆
,∴,椭圆方程为;                        6分
,则中点为,∴直线,   7分
,得
∴点的坐标为;                      10分
⑶设,则
由题意,∴               12分

            14分
,∴,即
∴直线与直线的斜率之积为定值,且定值为.             16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,动点满足:,且
(1)求动点的轨迹的方程;
(2)已知圆W: 的切线与轨迹相交于P,Q两点,求证:以PQ为直径的圆经过坐标原点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,之间满足什么关系;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于两点,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线与圆相切.
(1)求椭圆的方程;
(2)设直线与椭圆的交点为,求弦长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的极坐标方程为,曲线的极坐标方程为,曲线相交于两点.(
(Ⅰ)求两点的极坐标;
(Ⅱ)曲线与直线为参数)分别相交于两点,求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线交抛物线两点.若该抛物线上存在点,使得,则的取值范围为_________.

查看答案和解析>>

同步练习册答案